Oak Ridge Reservation

Annual Site Environmental Report 2019

Cover Image
Lynn Freeny
DOE Photographer

Design
Professional Project Services, Inc.
Oak Ridge Reservation
Annual Site Environmental Report
2019

US Department of Energy
project manager and Oak Ridge
Reservation coordinator:
Katatra Vasquez

Technical coordinators:
Y-12 National Security Complex: Paula Roddy-Roche
Vicki Brumback
James Donnelly

Oak Ridge National Laboratory: Scott Gregory
Jesse Morris
Walt Doty

East Tennessee Technology Park: Mike Coffey
Roger Petrie

Project director: James J. Rochelle
Project coordinator: Ben C. Rogers, PhD
Integrating editor: Kim M. Jaynes
Technical support: Susan O’Brien

Prepared by the following for the US Department of Energy:
UT-Battelle, LLC
under Contract DE-AC05-00OR22725

Consolidated Nuclear Security, LLC
under Contract DE-NA0001942

UCOR, an Amentum-led partnership with Jacobs
under Contract DE-SC-0004645

Professional Project Services, Inc.
under Contract GS-00F-112CA/89243118FSC400042

This report is available online at https://doeic.science.energy.gov/aser/aser2019/index.html.

DOE contact: If you have questions or comments about the ASER documents, or wish to provide review comments or suggestions for improvement, please complete the survey (see the bottom of the web page at the link above) or contact Katatra Vasquez, DOE/SC-CSC, at katatra.vasquez@science.doe.gov.
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States; UT-Battelle, LLC; Consolidated Nuclear Security, LLC; UCOR, an Amentum-led partnership with Jacobs; Professional Project Services, Inc.; nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The sampling and monitoring results reported herein are not a comprehensive report of all sampling and analysis performed.
Contents

Figures.. ix
Tables .. xvi
Appendices.. xx
Acronyms and Abbreviations .. xxi
Units of Measure and Conversion Factors ... xxvii
Acknowledgments ... xxix
 Executive Summary ... xxx

1. Introduction to the Oak Ridge Reservation .. 1-1
 1.1 Background... 1-2
 1.2 History of the Area around the Oak Ridge Reservation .. 1-2
 1.3 Site Description .. 1-3
 1.3.1 Location and Population .. 1-3
 1.3.2 Climate .. 1-4
 1.3.3 Regional Air Quality .. 1-5
 1.3.4 Surface Water .. 1-5
 1.3.5 Geological Setting ... 1-6
 1.3.6 Natural, Cultural, and Historic Resources .. 1-6
 1.3.6.1 Wetlands .. 1-6
 1.3.6.2 Wildlife and Endangered Species ... 1-8
 1.3.6.3 Threatened and Endangered Plants .. 1-13
 1.3.6.4 Historical and Cultural Resources ... 1-14
 1.4 Oak Ridge Sites .. 1-16
 1.4.1 Oak Ridge National Laboratory .. 1-16
 1.4.2 Y-12 National Security Complex .. 1-17
 1.4.3 East Tennessee Technology Park .. 1-19
 1.4.4 Environmental Management Waste Management Facility 1-20
 1.4.5 Oak Ridge Environmental Research Park .. 1-21
 1.4.6 Oak Ridge Institute for Science and Education ... 1-22
 1.4.7 National Nuclear Security Administration Office of Secure Transportation,
 Agent Operations Eastern Command .. 1-23
 1.4.8 Transuranic Waste Processing Center .. 1-23
 1.5 References ... 1-24

2. Compliance Summary and Community Involvement ... 2-1
 2.1 Laws and Regulations .. 2-1
 2.2 External Oversight and Assessments .. 2-1
 2.3 Reporting of Oak Ridge Reservation Spills and Releases 2-7
 2.4 Notices of Violations and Penalties .. 2-8
 2.5 Community Involvement ... 2-8
 2.5.1 Public Comments Solicited ... 2-8
 2.5.2 Oak Ridge Site Specific Advisory Board ... 2-8
 2.5.3 DOE Information Center ... 2-9
 2.5.3.1 Telephone Contacts ... 2-9
 2.5.3.2 Internet Sites .. 2-9
 2.6 References ... 2-9
3. East Tennessee Technology Park

3.1 Description of Site and Operations

3.2 Environmental Management System

3.2.1 Sustainable Environmental Stewardship

3.2.2 Environmental Compliance

3.2.3 Environmental Aspects/Impacts

3.2.4 Environmental Performance Objectives and Targets

3.2.5 Implementation and Operation

3.2.6 Pollution Prevention/Waste Minimization/Release of Property

3.2.7 Competence, Training, and Awareness

3.2.8 Communication

3.2.9 Benefits and Successes of Environmental Management System Implementation

3.2.10 Management Review

3.3 Compliance Programs and Status

3.3.1 Environmental Permits Compliance Status

3.3.2 National Environmental Policy Act/National Historic Preservation Act

3.3.3 Clean Air Act Compliance Status

3.3.4 Clean Water Act Compliance Status

3.3.5 National Pollutant Discharge Elimination System Permit Noncompliances

3.3.6 Safe Drinking Water Act Compliance Status

3.3.7 Resource Conservation and Recovery Act Compliance Status

3.3.8 Comprehensive Environmental Response, Compensation, and Liability Act Compliance Status

3.3.9 East Tennessee Technology Park RCRA-CERCLA Coordination

3.3.10 Toxic Substances Control Act Compliance Status—Polychlorinated Biphenyls

3.3.11 Emergency Planning and Community Right-to-Know Act Compliance Status

3.3.11.1 Chemical Inventories (EPCRA Section 312)

3.3.11.2 Toxic Chemical Release Reporting (EPCRA Section 313)

3.4 Quality Assurance Program

3.5 Air Quality Program

3.5.1 Construction and Operating Permits

3.5.1.1 Generally Applicable Permit Requirements

3.5.1.2 Radionuclide National Emission Standards for Hazardous Air Pollutants

3.5.1.3 Quality Assurance

3.5.1.4 Greenhouse Gas Emissions

3.5.1.5 Source-Specific Criteria Pollutants

3.5.1.6 Hazardous Air Pollutants (Nonradionuclide)

3.5.2 Ambient Air

3.6 Water Quality Program

3.6.1 NPDES Permit Description

3.6.1.1 RA Activities, CERCLA, and Legacy Pollutant Monitoring

3.6.1.2 Permit Renewal Monitoring

3.6.1.3 Investigative Monitoring

3.6.2 Storm Water Pollution Prevention Program

3.6.2.1 Flux Monitoring of Storm Water

3.6.2.2 Radiologic Monitoring of Storm Water

3.6.3 Storm Water Monitoring Associated with D&D Activities

3.6.3.1 Monitoring Associated with the K-25 Building
1. Mission .. 4-1
2. Modernization .. 4-2
3. Enriched Uranium Operations ... 4-2
4. Lithium Processing Facility .. 4-3
5. Support Facilities .. 4-3
6. Excess Facility Disposition ... 4-4
7. Environmental Management System .. 4-5
8. Integration with Integrated Safety Management System .. 4-5
9. Policy .. 4-6
10. Planning .. 4-7
11. Y-12 National Security Complex Environmental Aspects .. 4-7
12. Legal and Other Requirements ... 4-7
13. Objectives, Targets, and Environmental Action Plans .. 4-7
14. Programs .. 4-7
15. Implementation and Operation ... 4-9
16. Roles, Responsibility, and Authority .. 4-9
17. Communication and Community Involvement ... 4-9
18. Emergency Preparedness and Response ... 4-10
19. Checking .. 4-10
20. Monitoring and Measurement ... 4-10
21. Environmental Management System Assessments ... 4-10

3.6.3.2 Monitoring Associated with the K-31/K-33 Area .. 3-42
3.6.3.3 Monitoring Associated with the Demolition of Support Facilities 3-42
3.6.3.4 Mercury Monitoring Conducted as Part of the Previous NPDES Permit 3-47
3.6.3.5 PCB Monitoring at ETTP Storm Water Outfalls .. 3-50
3.6.3.6 Investigative Monitoring of the K-720 Coal Ash Pile and Powerhouse Areas 3-51
3.6.3.7 Chromium Water Treatment System and Plume Monitoring 3-53
3.6.4 Surface Water Monitoring .. 3-55
3.6.5 Groundwater Monitoring at ETTP ... 3-59
3.7 Biological Monitoring ... 3-61
3.7.1 Task 1: Bioaccumulation Monitoring .. 3-62
3.7.2 Task 2: Instream Benthic Macroinvertebrate Communities .. 3-76
3.7.3 Task 3: Fish Community .. 3-86
3.7.4 K-1007-P1 Pond Fish Community ... 3-91
3.8 Environmental Management and Waste Management Activities 3-92
3.8.1 Waste Management Activities ... 3-92
3.8.2 Environmental Remediation Activities ... 3-92
3.8.2.1 Soil Remediation .. 3-92
3.8.2.2 K-1423 Demolition Completed .. 3-93
3.8.2.3 Poplar Creek Facilities Demolition .. 3-93
3.8.2.4 Building K-1037 Demolition Completed ... 3-93
3.8.2.5 K-1414 Garage Demolition Completed .. 3-93
3.8.2.6 K-29 Slab Removal Completed ... 3-93
3.8.2.7 Commemoration of the K-25 Site .. 3-93
3.8.3 Reindustrialization .. 3-93
3.9 References ... 3-94
4. The Y-12 National Security Complex .. 4-1
4.3 Compliance Status ... 4-19
 4.3.1 Environmental Permits .. 4-19
 4.3.2 National Environmental Policy Act/National Historic Preservation Act 4-19
 4.3.3 Clean Air Act Compliance Status .. 4-27
 4.3.4 Clean Water Act Compliance Status .. 4-28
 4.3.5 Safe Drinking Water Act Compliance Status ... 4-28
 4.3.6 Resource Conservation and Recovery Act Compliance Status 4-28
 4.3.6.1 Resource Conservation and Recovery Act Underground Storage Tanks 4-30
 4.3.6.2 Resource Conservation and Recovery Act Subtitle D Solid Waste 4-30
 4.3.7 Resource Conservation and Recovery Act–Comprehensive Environmental Response, Compensation, and Liability Act Coordination ... 4-30
 4.3.8 Toxic Substances Control Act Compliance Status .. 4-30
 4.3.9 Emergency Planning and Community Right-to-Know Act Compliance Status 4-31
 4.3.10 Spill Prevention, Control, and Countermeasures .. 4-32
 4.3.11 Unplanned Releases ... 4-33
 4.3.12 Audits and Oversight .. 4-33
 4.3.13 Radiological Release of Property .. 4-34
 4.3.13.1 Property Potentially Contaminated on the Surface ... 4-35
 4.3.13.2 Property Potentially Contaminated in Volume (Volumetric Contamination) 4-36
 4.3.13.3 Process Knowledge .. 4-36
4.4 Air Quality Program ... 4-37
 4.4.1 Construction and Operating Permits ... 4-37
 4.4.1.1 Generally Applicable Permit Requirements ... 4-38
 4.4.1.2 National Emission Standards for Hazardous Air Pollutants for Radionuclides 4-39
 4.4.1.3 Quality Assurance .. 4-41
 4.4.1.4 Source-Specific Criteria Pollutants .. 4-41
 4.4.1.5 Mandatory Reporting of Greenhouse Gas Emissions under 40 Code of Federal Regulations 98 4-41
 4.4.1.6 Hazardous Air Pollutants (Non-radiological) .. 4-42
 4.4.2 Ambient Air .. 4-44
 4.4.2.1 Mercury .. 4-44
5. Oak Ridge National Laboratory ... 5-1
 5.1 Description of Site, Missions, and Operations 5-2
 5.2 Environmental Management Systems ... 5-4
 5.2.1 UT-Battelle Environmental Management System 5-4
 5.2.1.1 Integration with the Integrated Safety Management System ... 5-5
 5.2.1.2 UT-Battelle Environmental Policy for Oak Ridge National Laboratory ... 5-5
 5.2.1.3 Planning .. 5-5
 5.2.1.4 Site Sustainability ... 5-6
 5.2.1.5 Storm Water Management and the Energy Independence and Security Act of 2007 .. 5-12
 5.2.1.6 Emergency Preparedness and Response ... 5-13

4.5 Water Quality Program... 4-49
 4.5.1 National Pollutant Discharge Elimination System Permit and Compliance Monitoring ... 4-49
 4.5.2 Radiological Monitoring Plan and Results 4-52
 4.5.3 Storm Water Pollution Prevention ... 4-55
 4.5.4 Y-12 National Security Complex Ambient Surface Water Quality ... 4-56
 4.5.5 Industrial Wastewater Discharge Permit 4-57
 4.5.6 Quality Assurance/Quality Control ... 4-59
 4.5.7 Biomonitoring Program ... 4-59
 4.5.8 Biological Monitoring and Abatement Program 4-60
 4.5.8.1 Bioaccumulation Studies ... 4-62
 4.5.8.2 Benthic Invertebrate Surveys ... 4-64
 4.5.8.3 Fish Community Monitoring ... 4-66
 4.5.8.4 Upper Bear Creek Remediation ... 4-68
 4.6 Groundwater at the Y-12 National Security Complex 4-69
 4.6.1 Hydrogeologic Setting ... 4-69
 4.6.2 Well Installation and Plugging and Abandonment Activities 4-72
 4.6.3 Calendar Year 2019 Groundwater Monitoring 4-72
 4.6.4 Y-12 National Security Complex Groundwater Quality 4-73
 4.6.4.1 Upper East Fork Poplar Creek Hydrogeologic Regime 4-74
 4.6.4.2 Bear Creek Hydrogeologic Regime ... 4-80
 4.6.4.3 Chestnut Ridge Hydrogeologic Regime 4-85
 4.7 Quality Assurance Program ... 4-88
 4.8 Environmental Management and Waste Management Activities 4-90
 4.8.1 Environmental Management ... 4-90
 4.8.1.1 Mercury Technology Development Activities 4-90
 4.8.1.2 Mercury Removed from COLEX .. 4-90
 4.8.1.3 Major Soil Disposition Project Completed 4-91
 4.8.1.4 Biology Complex Deactivation ... 4-91
 4.8.1.5 Mercury Treatment Facility ... 4-92
 4.8.2 Waste Management ... 4-92
 4.8.2.1 Comprehensive Environmental Response, Compensation, and Liability Act Waste Disposal .. 4-92
 4.8.2.2 Solid Waste Disposal ... 4-92
 4.8.2.3 Wastewater Treatment ... 4-92
 4.9 References ... 4-93
5.2.1.7 Checking ... 5-14
5.2.2 Other Environmental Management System Assessments ... 5-14
 5.2.2.1 Environmental Management System for the Transuranic Waste Processing Center ... 5-14
 5.2.2.2 Environmental Management System for Isotek ... 5-15

5.3 Compliance Programs and Status .. 5-16
 5.3.1 Environmental Permits .. 5-16
 5.3.2 National Environmental Policy Act/National Historic Preservation Act 5-19
 5.3.3 Clean Air Act Compliance Status .. 5-20
 5.3.4 Clean Water Act Compliance Status ... 5-20
 5.3.5 Safe Drinking Water Act Compliance Status ... 5-21
 5.3.6 Resource Conservation and Recovery Act Compliance Status 5-21
 5.3.7 Oak Ridge National Laboratory RCRA-CERCLA Coordination 5-23
 5.3.7.1 CERCLA Activities in Bethel Valley ... 5-23
 5.3.7.2 Utilities Project Upgrade ... 5-24
 5.3.7.3 RCRA Underground Storage Tanks ... 5-24
 5.3.8 CERCLA Compliance Status ... 5-24
 5.3.9 Toxic Substances Control Act Compliance Status .. 5-25
 5.3.10 Emergency Planning and Community Right-to-Know Act Compliance Status 5-25
 5.3.10.1 Safety Data Sheet/Chemical Inventory (Section 312) .. 5-26
 5.3.10.2 Toxic Chemical Release Reporting (EPCRA Section 313) 5-26
 5.3.11 US Department of Agriculture/Tennessee Department of Agriculture 5-26
 5.3.12 Wetlands ... 5-26
 5.3.13 Radiological Clearance of Property at Oak Ridge National Laboratory 5-26
 5.3.13.1 Graded Approach to Evaluate Material and Equipment for Release 5-27
 5.3.13.2 Authorized Limits Clearance Process for Spallation Neutron Source and High Flux Isotope Reactor Neutron Scattering Experiment Samples ... 5-28

5.4 Air Quality Program .. 5-28
 5.4.1 Construction and Operating Permits ... 5-28
 5.4.2 National Emission Standards for Hazardous Air Pollutants—Asbestos.................. 5-29
 5.4.3 Radiological Airborne Effluent Monitoring .. 5-29
 5.4.3.1 Sample Collection and Analytical Procedure ... 5-30
 5.4.3.2 Results ... 5-32
 5.4.4 Stratospheric Ozone Protection ... 5-47
 5.4.5 Ambient Air .. 5-47

5.5 Oak Ridge National Laboratory Water Quality Program .. 5-48
 5.5.1 Treatment Facility Discharges ... 5-50
 5.5.2 Residual Bromine and Chlorine Monitoring ... 5-52
 5.5.3 Radiological Monitoring .. 5-55
 5.5.4 Mercury in the White Oak Creek Watershed .. 5-60
 5.5.4.1 Buildings 4501 and 4505 ... 5-60
 5.5.4.2 Buildings 3592 and 3503 .. 5-60
 5.5.4.3 Ambient Mercury in Water .. 5-61
 5.5.5 Storm Water Surveillances and Construction Activities 5-69
 5.5.6 Biological Monitoring .. 5-69
 5.5.6.1 Bioaccumulation Studies .. 5-69
 5.5.6.2 Benthic Macroinvertebrate Communities ... 5-71
 5.5.6.3 Fish Communities ... 5-78
 5.5.7 Polychlorinated Biphenyls in the White Oak Creek Watershed 5-79
 5.5.8 Oil Pollution Prevention ... 5-80
 5.5.9 Surface Water Surveillance Monitoring .. 5-81
Oak Ridge Reservation Environmental Management Activities at Oak Ridge National Laboratory Groundwater Monitoring

5.7 Quality Assurance Program
5.7.1 Work/Project Planning and Control
5.7.2 Personnel Training and Qualifications
5.7.3 Equipment and Instrumentation
5.7.3.1 Calibration
5.7.3.2 Standardization
5.7.3.3 Visual Inspection, Housekeeping, and Grounds Maintenance
5.7.4 Assessment
5.7.5 Analytical Quality Assurance
5.7.6 Data Management and Reporting
5.7.7 Records Management

5.8 Environmental Management and Waste Management Activities at Oak Ridge National Laboratory
5.8.1 Wastewater Treatment
5.8.2 Newly Generated Waste Management
5.8.3 Transuranic Waste Processing Center

5.9 References

6. Oak Ridge Reservation Environmental Monitoring Program
6.1 Meteorological Monitoring
6.1.1 Data Collection and Analysis
6.1.2 Results
6.2 External Gamma Radiation Monitoring
6.2.1 Data Collection and Analysis
6.2.2 Results
6.3 Ambient Air Monitoring
6.3.1 Data Collection and Analysis
6.3.2 Results
6.4 Surface Water Monitoring
6.4.1 Data Collection and Analysis
6.4.2 Results
6.5 Groundwater Monitoring
6.5.1 Off-Site Groundwater Assessment
6.5.2 Regional and Site-Scale Flow Model
6.6 Food
6.6.1 Hay
6.6.1.1 Data Collection and Analysis
6.6.1.2 Results
6.6.2 Vegetables
6.6.2.1 Data Collection and Analysis ..6-12
6.6.2.2 Results ..6-12
6.6.3 Milk ..6-13
6.6.3.1 Data Collection and Analysis ..6-13
6.6.3.2 Results ..6-13
6.6.4 Fish ..6-13
6.6.4.1 Data Collection and Analysis ..6-14
6.6.4.2 Results ..6-15
6.6.5 White-Tailed Deer ...6-16
6.6.5.1 Data Collection and Analysis ..6-16
6.6.5.2 Results ..6-16
6.6.6 Canada Geese ..6-17
6.6.6.1 Data Collection and Analysis ..6-17
6.6.6.2 Results ..6-17
6.6.7 Turkey Monitoring ...6-17
6.6.7.1 Data Collection and Analysis ..6-17
6.6.7.2 Results ..6-17
6.7 Invasive Plant Management on the US DOE Oak Ridge Reservation ..6-17
6.8 Fire Protection Management and Planning ..6-21
6.9 Quality Assurance ..6-23
6.10 References ...6-23

7. Dose ..7-1
7.1 Radiation Dose ..7-1
7.1.1 Terminology ...7-2
7.1.2 Methods of Evaluation ..7-2
7.1.2.1 Airborne Radionuclides ...7-2
7.1.2.2 Waterborne Radionuclides ...7-9
7.1.2.3 Radionuclides in Other Environmental Media7-13
7.1.2.4 Food ...7-14
7.1.3 Current-Year Summary ...7-17
7.1.4 Five-Year Trends ..7-18
7.1.5 Doses to Aquatic and Terrestrial Biota ...7-19
7.1.5.1 Aquatic Biota ..7-19
7.1.5.2 Terrestrial Biota ...7-20
7.2 Chemical Dose ..7-21
7.2.1 Drinking Water Consumption ...7-21
7.2.1.1 Surface Water ..7-21
7.2.1.2 Groundwater ..7-23
7.2.2 Fish Consumption ..7-23
7.3 References ..7-24
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to the Oak Ridge Reservation</td>
<td></td>
</tr>
<tr>
<td>1.1. Location of the Oak Ridge Reservation in Tennessee</td>
<td>1-3</td>
</tr>
<tr>
<td>1.2. Map of the Oak Ridge Reservation</td>
<td>1-4</td>
</tr>
<tr>
<td>1.3. Location of Oak Ridge Reservation wetlands</td>
<td>1-7</td>
</tr>
<tr>
<td>1.4. Bald eagle nest on the Oak Ridge Reservation</td>
<td>1-12</td>
</tr>
<tr>
<td>1.5. Interesting bird species sighted on the Oak Ridge Reservation in recent years: (a) sora, (b) least bittern, and (c) Virginia rail</td>
<td>1-13</td>
</tr>
<tr>
<td>1.6. Aerial view of the Oak Ridge National Laboratory</td>
<td>1-17</td>
</tr>
<tr>
<td>1.7. Aerial view of the Y-12 National Security Complex</td>
<td>1-18</td>
</tr>
<tr>
<td>1.8. Aerial view of East Tennessee Technology Park</td>
<td>1-20</td>
</tr>
<tr>
<td>1.9. Aerial view of the Environmental Management Waste Management Facility</td>
<td>1-21</td>
</tr>
<tr>
<td>1.10. Location of the Oak Ridge Environmental Research Park</td>
<td>1-22</td>
</tr>
<tr>
<td>3. East Tennessee Technology Park</td>
<td></td>
</tr>
<tr>
<td>3.1. East Tennessee Technology Park</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2. East Tennessee Technology Park before the start of decontamination and decommissioning activities in 1991</td>
<td>3-3</td>
</tr>
<tr>
<td>3.3. East Tennessee Technology Park in 2020, showing progress in reindustrialization</td>
<td>3-3</td>
</tr>
<tr>
<td>3.4. Pollution prevention recycling activities related to solid waste reduction at the East Tennessee Technology Park in Calendar Year 2019</td>
<td>3-5</td>
</tr>
<tr>
<td>3.5. Oak Ridge Solar Park</td>
<td>3-7</td>
</tr>
<tr>
<td>3.6. East Tennessee Technology Park National Pollutant Discharge Elimination System permit noncompliances since 2012</td>
<td>3-12</td>
</tr>
<tr>
<td>3.7. East Tennessee Technology Park total on-site ozone-depleting substances inventory, 10-year history</td>
<td>3-20</td>
</tr>
<tr>
<td>3.8. East Tennessee Technology Park stationary source greenhouse gas emissions tracking history</td>
<td>3-23</td>
</tr>
<tr>
<td>3.9. East Tennessee Technology Park greenhouse gas annual emissions (Scopes 1 and 2, including industrial landfills at Y-12)</td>
<td>3-24</td>
</tr>
<tr>
<td>3.10. FY 2019 East Tennessee Technology Park greenhouse gas emissions by scope, as defined in Executive Order 13514</td>
<td>3-25</td>
</tr>
<tr>
<td>3.11. East Tennessee Technology Park ambient air monitoring station locations</td>
<td>3-27</td>
</tr>
<tr>
<td>3.12. East Tennessee Technology Park ambient air monitoring station</td>
<td>3-28</td>
</tr>
<tr>
<td>3.13. Adjusted flow curve for Outfall 100</td>
<td>3-31</td>
</tr>
<tr>
<td>3.14. Adjusted flow curve for Outfall 180</td>
<td>3-33</td>
</tr>
<tr>
<td>3.15. Flow-proportional mercury sampling at Outfall 180</td>
<td>3-33</td>
</tr>
<tr>
<td>3.16. Adjusted flow curve for Outfall 190</td>
<td>3-34</td>
</tr>
</tbody>
</table>
3.17. Flow-proportional mercury sampling at Outfall 190 .. 3-35
3.18. Tc-99 levels at K-1700 Weir ... 3-41
3.19. Mercury concentrations at Outfall 180 .. 3-48
3.20. Mercury concentrations at Outfall 190 .. 3-49
3.21. Mercury concentrations at the K-1700 Weir .. 3-49
3.22. Mercury concentrations at Outfall 05A .. 3-50
3.23. Total chromium sample results for the chromium collection system 3-54
3.24. Hexavalent chromium sample results for the chromium collection system 3-54
3.25. East Tennessee Technology Park Environmental Monitoring Program surface water monitoring locations ... 3-55
3.26. Annual average percentage of derived concentration standards at surface water monitoring locations, 2019 .. 3-56
3.27. Trichloroethene concentrations in Mitchell Branch .. 3-57
3.28. Concentrations of cis-1,2-dichloroethene in Mitchell Branch .. 3-58
3.29. Vinyl chloride concentrations in Mitchell Branch .. 3-58
3.30. Total chromium concentrations in Mitchell Branch .. 3-59
3.31. Water bodies at the East Tennessee Technology Park .. 3-61
3.32. Major storm water outfalls and biological monitoring locations on Mitchell Branch 3-62
3.33. Mean total PCB (A: µg/g, wet wt; 1993–2019) and mercury (B: µg/g wet wt; 2009–2019) concentrations in the soft tissues of caged Asiatic clams deployed in Mitchell Branch .. 3-65
3.34. Methylmercury as a portion of total mercury concentrations in the soft tissues of caged Asiatic clams deployed in Mitchell Branch (µg/g wet wt; 2009–2019) .. 3-66
3.35. Mean PCB (top panel) and mercury (bottom panel) concentrations (µg/g, wet wt) in redbreast sunfish fillets in Mitchell Branch (MIK 0.2) .. 3-67
3.36. Mean aqueous total PCB concentrations, total suspended solids, and vegetation cover in the K-1007-P1 Pond, 2007–2019 3-68
3.37. Mean total PCB concentrations (µg/g, wet wt) in caged clams placed at K-1007-P1 outfalls compared with reference stream clams (Little Sewee Creek), 1993–2019 3-70
3.38. Mean PCB concentrations (µg/g, wet wt) in fish from the K-1007-P1 Pond, 2007–2019 3-71
3.40. Mean total PCB concentrations in largemouth bass from the K-901-A Pond and the K-720 Slough .. 3-73
3.41. Mean total PCB (µg/g, wet wt; 1993–2019) concentrations in the soft tissues of caged Asiatic clams deployed in the K-901-A Pond for a 4-week period ... 3-73
3.42. Mean total PCB (µg/g, wet wt; 2009–2019) concentrations in the fillets of largemouth bass, common carp, and smallmouth buffalo collected from the K-720 Slough 3-74
3.43. Collecting an invertebrate sample using Oak Ridge National Laboratory Biological Monitoring and Abatement Program protocols ... 3-76
3.44. Sampling for benthic macroinvertebrates with TDEC protocols .. 3-76
3.45. Mean total taxonomic richness (top) and richness of the pollution-intolerant Ephemeroptera, Plecoptera, and Trichoptera taxa per sample (bottom) for Mitchell Branch sites, April 1987–2019 .. 3-79
3.46. Mean percent density of the pollution-intolerant Ephemeroptera, Plecoptera, and Trichoptera taxa (i.e., stoneflies, mayflies, and caddisflies), and percent density of the pollution-tolerant Orthocladiinae midge larvae (Chironomidae) at four Mitchell Branch sites, April 1987–2019 ... 3-80
3.47. Temporal trends in the Tennessee Department of Environment and Conservation Biotic Index (top) and Stream Habitat Index (bottom) scores for four Mitchell Branch sites, August 2008–2019 ... 3-81
3.48. Mean total taxonomic richness (top) and taxonomic richness of the pollution-intolerant Ephemeroptera, Plecoptera, and Trichoptera taxa per sample (bottom) for the benthic macroinvertebrate community at four Mitchell Branch sites, and the range of mean values from five reference sites on ORR, April 2005–2019 .. 3-84
3.49. Mean percent density of the pollution-intolerant taxa (i.e., stoneflies, mayflies, and caddisflies; top), and percent density of the pollution-tolerant Orthocladiinae midge larvae (Chironomidae; bottom) in four Mitchell Branch sites, and the range of mean values from five reference sites on ORR, April 2005–2019 .. 3-85
3.50. Construction of lined section of Mitchell Branch, MIK 0.7, in 1998 (left) and more recent habitat conditions in 2019 (right) .. 3-86
3.51. Species richness for the fish communities at sites in Mitchell Branch kilometer and in reference streams Mill Branch kilometer, Scarboro Creek, and Ish Creek, 1987–2019 .. 3-87
3.52. Density for the fish communities at sites in Mitchell Branch kilometer and in reference streams Mill Branch kilometer, Scarboro Creek, and Ish Creek, 1987–2019 .. 3-88
3.53. Biomass for the fish communities at sites in Mitchell Branch kilometer and in reference streams Mill Branch kilometer, Scarboro Creek, and Ish Creek, 1987–2019 .. 3-89
3.54. Sensitive fish species observed in lower Mitchell Branch .. 3-90
3.55. Changes in the K-1007-P1 Pond fish community (% composition) from 2007 to 2019 .. 3-92

4. The Y-12 National Security Complex
4.1. Age of mission-critical facilities at the Y-12 National Security Complex ... 4-2
4.2. Relationship between the Y-12 National Security Complex Environmental Management System and the Integrated Safety Management System depicted in a “plan-do-check-act” cycle .. 4-6
4.3. Y-12 National Security Complex’s environment, safety, and health policy ... 4-6
4.4. Cost efficiencies from Y-12 National Security Complex pollution prevention activities .. 4-12
4.5. Y-12 National Security Complex pollution prevention initiatives ... 4-12
4.6. Y-12 National Security Complex recycling results .. 4-13
4.7. National Environmental Policy Act – an umbrella law ... 4-19
4.8. Photograph of the Y-12 History Center ... 4-26
4.9. Photograph of new exhibit showing Y-12 National Security Complex’s current and future missions .. 4-26
4.10. Photographs of National Park Service personnel at Y-12 National Security Complex’s Earth Day celebration ... 4-27
4.11. Y-12 National Security Complex’s path to elimination of its inventory of legacy mixed waste as part of the Oak Ridge Reservation Site Treatment Plan by fiscal year .. 4-29
4.14. Locations of ambient air monitoring stations at Y-12 National Security Complex 4-45
4.15. Temporal trends in mercury vapor concentration for the boundary monitoring stations at Y-12 National Security Complex, July 1986 to December 2019 [(a) and (b)] and January 1994 to December 2019 for ambient air station 8 [(c)] ... 4-47
4.16. Major Y-12 National Security Complex National Pollutant Discharge Elimination System outfalls and monitoring locations .. 4-50
4.17. Surface water and sanitary sewer radiological sampling locations at Y-12 National Security Complex ... 4-53
4.18. Five-year trend of Y-12 National Security Complex releases of uranium to East Fork Poplar Creek ... 4-54
4.19. Y-12 National Security Complex storm water monitoring locations, East Fork Poplar Creek 4-56
4.20. Surface Water Hydrological Information Support System monitoring locations 4-57
4.21. Locations of biological monitoring sites on East Fork Poplar Creek in relation to Y-12 National Security Complex .. 4-61
4.22. Locations of biological monitoring reference sites in relation to Y-12 National Security Complex ... 4-62
4.23. Semiannual average mercury concentration in muscle fillets of redbreast sunfish and water from East Fork Poplar Creek at East Fork Poplar Creek kilometer 23.4 (water) and East Fork Poplar Creek kilometer 24.4 (fish), Fiscal Year 2019 ... 4-63
4.24. Annual mean concentrations of polychlorinated biphenyls in rock bass muscle fillets at East Fork Poplar Creek kilometer 23.4, Fiscal Year 2019 .. 4-64
4.25. Benthic macroinvertebrate communities in three sites along East Fork Poplar Creek and the 95 percent confidence interval for two nearby reference streams (Brushy Fork and Hinds Creek) ... 4-65
4.26. Comparison of mean sensitive species richness (number of species) collected each year (1985–2019) from four sites in East Fork Poplar Creek and a reference site (Brushy Fork)........ 4-67
4.27. Fish density (number of fish per square meter) for two sites in Upper East Fork Poplar Creek and a reference site (Brushy Fork), 1996–2019 .. 4-67
4.28. Known or potential contaminant sources for which groundwater monitoring is performed at the Y-12 National Security Complex .. 4-69
4.29. Hydrogeologic regimes; flow directions; and perimeter/exit pathway wells, springs, and surface water monitoring stations, and the position of the Maynardville Limestone in Bear Creek Valley at the Y-12 National Security Complex ... 4-70
4.30. Groundwater elevation contours and flow directions at the Y-12 National Security Complex 4-71
4.31. Groundwater monitoring well sampling at the Y-12 National Security Complex 4-72
4.32. Nitrate in groundwater at the Y-12 National Security Complex, 2019 .. 4-74
4.33. Summed volatile organic compounds in groundwater at the Y-12 National Security Complex, 2019 ... 4-75
4.34. Gross-alpha activity in groundwater at the Y-12 National Security Complex, 2019 4-76
4.36. Summed volatile organic compounds for GW-382 and GW-383 in the East Fork Regime 4-77
4.37. Summed volatile organic compounds for GW-151 and GW-220 in the East Fork Regime 4-78
4.38. Nitrate and gross-beta trends for GW-085 and GW-537 in the Bear Creek Regime 4-81
4.39. Volatile organic compounds in wells GW-053 and GW-046-71 at the Bear Creek Burial Grounds, 2019 4-83
4.40. Volatile organic compounds in GW-229 at the Oil Landfarm, 2019 ... 4-83
4.41. Calendar Year 2019 concentrations of selected contaminants in exit pathway monitoring wells in the Bear Creek hydrogeologic regime ... 4-85

5. Oak Ridge National Laboratory
5.1. Location of Oak Ridge National Laboratory within ORR and its relationship to other local DOE facilities ... 5-2
5.2. Production of lower-cost carbon fiber at the Carbon Fiber Technology Facility 5-4
5.3. Oak Ridge National Laboratory is the third federal location and the second national laboratory to receive the 50001 Ready Program certification .. 5-7
5.4. Historical, current (FY 2019), and projected energy use intensity at Oak Ridge National Laboratory ... 5-8
5.5. Historical and current (FY 2019) water use intensity at Oak Ridge National Laboratory 5-9
5.6. Oak Ridge National Laboratory received an environmental stewardship carpet recycle certificate in 2019 ... 5-10
5.7. Locations of major radiological emission points at Oak Ridge National Laboratory, 2019 5-30
5.8. Total curies of tritium discharged from Oak Ridge National Laboratory to the atmosphere, 2015–2019 ... 5-46
5.9. Total curies of 131I discharged from Oak Ridge National Laboratory to the atmosphere, 2015–2019 ... 5-46
5.10. Total curies of 41Ar, 138Cs, and 212Pb discharged from Oak Ridge National Laboratory to the atmosphere, 2015–2019 ... 5-46
5.11. Diagram of the adaptive management framework with step-wise planning specific to the Oak Ridge National Laboratory Water Quality Protection Plan .. 5-49
5.12. Application of stressor identification guidance to address mercury impairment in the White Oak Creek watershed ... 5-50
5.13. Selected surface water, National Pollutant Discharge Elimination System, and reference sampling locations at Oak Ridge National Laboratory, 2019 ... 5-58
5.14. Outfalls and instream locations at Oak Ridge National Laboratory with average radionuclide concentrations greater than 4 percent of the relevant derived concentration standards in 2019 ... 5-58
5.15. Cesium-137 discharges at White Oak Dam, 2015–2019 ... 5-59
5.18. Total radioactive strontium discharges at White Oak Dam, 2015–2019 .. 5-59
5.19. Tritium discharges at White Oak Dam, 2015–2019 ... 5-60
5.20. Annual flow volume at White Oak Dam, 2015–2019 ... 5-60
5.21. Outfalls with known historic mercury sources to White Oak Creek .. 5-61
5.22. Instream mercury monitoring and data locations, 2019 ... 5-62
5.23. Total aqueous mercury concentrations at sites in White Oak Creek downstream from Oak Ridge National Laboratory, 1998–2019 ... 5-62
5.24. Total mercury fluxes (HgT, mg/day) at White Oak Creek instream monitoring locations WCK 1.5, WCK 2.3, WCK 3.4, WCK 4.1, and WCK 6.8; 2010–2019 .. 5-63
5.25. Total mercury concentration and total mercury flux (HgT) of PWTC-3608 discharges to White Oak Creek (Outfall X12), 2009–2019 ... 5-64
5.26. Dissolved mercury fluxes (mg/day) at White Oak Creek instream monitoring locations WCK 1.5, WCK 2.3, WCK 3.4, WCK 4.1, and WCK 6.8; 2010–2019 .. 5-64
5.27. Dry weather total mercury concentration at Outfall 207 vs. Outfall 211 (HgT = total mercury flux) ... 5-65
5.28. Dry-weather flows and fluxes at Outfall 207 vs. Outfall 211, 2015–2019 ... 5-66
5.29. Outfall 207 dry weather flow and flux of total mercury, 2015–2019 ... 5-67
5.31. Outfall 211 dry weather flow, Hg concentration, and HgT flux, 2012–2019................................. 5-68
5.32. Outfall 211 storm flow, dissolved and total mercury flux 2014–2019 ... 5-69
5.33. Mean concentrations of mercury (± standard error, N = 6) in muscle tissue of sunfish and bass from WCKs 3.9, 2.9, and 2.3 and White Oak Lake (WCK 1.5), 1998–2019....................... 5-70
5.34. Mean total PCB concentrations (± standard error, N = 6) in fish fillets collected from the White Oak Creek watershed, 1998–2019 .. 5-71
5.35. Benthic macroinvertebrate communities in First Creek .. 5-73
5.36. Benthic macroinvertebrate communities in Fifth Creek ... 5-74
5.37. Benthic macroinvertebrate communities in Walker Branch, Melton Branch, and White Oak Creek ... 5-75
5.38. Temporal trends in Tennessee Department of Environment and Conservation macroinvertebrate scores for White Oak Creek watershed streams, August sampling periods 2009–2019.. 5-76
5.39. Fish species richness (number of species) in upper White Oak Creek and lower Melton Branch compared with two reference streams, Brushy Fork and Mill Branch, 1985–2019 5-78
5.40. Locations of monitoring points for First Creek source investigation.. 5-80
5.41. Oak Ridge National Laboratory surface water sampling locations, 2019 .. 5-82
5.42. UT-Battelle exit pathway groundwater monitoring locations at Oak Ridge National Laboratory, 2019 ... 5-87
5.43. Groundwater monitoring locations at the Spallation Neutron Source, 2019 5-92
5.44. Simple hydrograph of spring discharge vs. time after initiation of rainfall 5-93

6. Oak Ridge Reservation Environmental Monitoring Program

6.1. The Oak Ridge Reservation meteorological monitoring network, including sonic detection and ranging (SODAR) devices ... 6-3
6.2. External gamma radiation monitoring locations on the Oak Ridge Reservation 6-4
6.3. Oak Ridge Reservation ambient air station .. 6-5
6.4. Locations of Oak Ridge Reservation perimeter air monitoring stations 6-6
6.5. Oak Ridge Reservation surface water surveillance sampling locations .. 6-10
6.6. Fish-sampling locations for the Oak Ridge Reservation Surveillance Program 6-14
6.7. Map of cumulative invasive plant treatment areas on the Oak Ridge Reservation 6-20
6.8. Wildland management units on the Oak Ridge Reservation ... 6-23

7. Dose

7.1. Location of the maximally exposed individual (MEI) for ORR (2019 Data) 7-5
7.2. Nuclides contributing to the effective dose at Y-12 National Security Complex, 2019 7-6
7.3. Nuclides contributing to effective dose at Oak Ridge National Laboratory, 2019 7-7
7.4. Nuclides contributing to effective dose at East Tennessee Technology Park, 2019 7-7
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to the Oak Ridge Reservation</td>
<td></td>
</tr>
<tr>
<td>1.1. Animal species of special concern reported on the Oak Ridge Reservation</td>
<td>1-8</td>
</tr>
<tr>
<td>1.2. Vascular plant species listed by state or federal agencies and sighted/reported on or near the Oak Ridge Reservation</td>
<td>1-13</td>
</tr>
<tr>
<td>2. Compliance Summary and Community Involvement</td>
<td></td>
</tr>
<tr>
<td>2.1. Applicable environmental laws and regulations and 2019 status</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2. Summary of regulatory environmental evaluations, audits, inspections, and assessments conducted at Oak Ridge Reservation in 2019</td>
<td>2-7</td>
</tr>
<tr>
<td>3. East Tennessee Technology Park</td>
<td></td>
</tr>
<tr>
<td>3.1. Surface contamination values and DOE Order 458.1 authorized limits for surface activity</td>
<td>3-10</td>
</tr>
<tr>
<td>3.2. East Tennessee Technology Park environmental permits, 2019</td>
<td>3-13</td>
</tr>
<tr>
<td>3.3. Regulatory oversight, assessments, inspections, and site visits at East Tennessee Technology Park, 2019</td>
<td>3-14</td>
</tr>
<tr>
<td>3.4. Radionuclides in ambient air at East Tennessee Technology Park, January 2019 through December 2019</td>
<td>3-21</td>
</tr>
<tr>
<td>3.5. Mercury results from flow-proportional composite sampling at Outfall 180</td>
<td>3-32</td>
</tr>
<tr>
<td>3.6. Mercury flux at Outfall 180 for CY 2019</td>
<td>3-34</td>
</tr>
<tr>
<td>3.7. Mercury results from flow-proportional composite sampling at Outfall 190</td>
<td>3-35</td>
</tr>
<tr>
<td>3.8. Mercury flux at Outfall 190 for 2019</td>
<td>3-36</td>
</tr>
<tr>
<td>3.9. Analytical results for radiological monitoring at ETTP storm water outfalls</td>
<td>3-37</td>
</tr>
<tr>
<td>3.10. Radionuclides released to off-site waters from the ETTP storm water system in 2019</td>
<td>3-38</td>
</tr>
<tr>
<td>3.11. Analytical results for radiological monitoring at Outfall 158</td>
<td>3-38</td>
</tr>
<tr>
<td>3.12. Analytes with DCS exceedances from 7/17/19 water sampling event at Outfall 362</td>
<td>3-38</td>
</tr>
<tr>
<td>3.13. Analytes with DCS exceedances from monitoring at Outfall 382</td>
<td>3-39</td>
</tr>
<tr>
<td>3.14. Results for the K-25 Building pad D&D monitoring</td>
<td>3-39</td>
</tr>
<tr>
<td>3.15. Results from quarterly 99Tc monitoring at Outfall 190</td>
<td>3-41</td>
</tr>
<tr>
<td>3.16. Analytical results exceeding reference standards from the K-31/K-33 area monitoring</td>
<td>3-42</td>
</tr>
<tr>
<td>3.17. Analytical results exceeding reference standards from pre-D&D J-Lab/Building K-1023 monitoring</td>
<td>3-43</td>
</tr>
<tr>
<td>3.18. Results over reference standards for the K-1037 D&D monitoring</td>
<td>3-43</td>
</tr>
<tr>
<td>3.19. Results over reference standards for the K-1232 D&D monitoring</td>
<td>3-44</td>
</tr>
<tr>
<td>3.20. Analytical results exceeding reference standards from pre-D&D Building K-1423 D&D monitoring</td>
<td>3-45</td>
</tr>
<tr>
<td>3.22. Analytical results exceeding reference standards as part of the Outfall 362/EU-19 monitoring</td>
<td>3-46</td>
</tr>
</tbody>
</table>
3.23. Analytical results exceeding reference standards from monitoring at Outfall 350 .. 3-47
3.24. Analytical results exceeding reference standards from monitoring at Outfall 360 .. 3-47
3.25. Quarterly NPDES/SWPP Program mercury monitoring results, CY 2018 through CY 2019 3-48
3.26. Analytical results exceeding reference standards from the Outfall 992 drainage area monitoring .. 3-51
3.27. Analytical results exceeding reference standards from the Outfall 992 follow-up sampling effort .. 3-52
3.28. Results over reference standards for the Powerhouse outfall monitoring effort 3-53
3.29. Average concentrations (µg/g, wet wt) of total PCBs (Aroclors 1248, 1254, and 1260) in fillets and whole-body composites of fish collected in 2019 near the East Tennessee Technology Park .. 3-75
3.30. Stream sites included in the comparison between Mitchell Branch and other reference sites on the Oak Ridge Reservation (ORR) ... 3-77
3.31. Tennessee Macroinvertebrate Index (TMI) metric values and scores and index score for Mitchell Branch, August 19, 2019 ... 3-82

4. The Y-12 National Security Complex
4.1. FY 2019 sustainability goals and performance ... 4-14
4.2. Y-12 environmental permits, CY 2019 ... 4-20
4.3. NNSA-approved categorical exclusions ... 4-25
4.4. Emergency Planning and Community Right-to-Know Act Section 313 toxic chemical release and off-site transfer summary for Y-12, 2018 and 2019 .. 4-32
4.5. Summary of external regulatory audits and reviews, 2019 .. 4-33
4.6. Summary of materials released in 2019 ... 4-34
4.7. DOE Order 458.1 pre-approved authorized limits .. 4-35
4.8. Actual versus allowable air emissions from the Y-12 steam plant, 2019 .. 4-38
4.9. GHG emissions from Y-12 stationary fuel combustion sources ... 4-42
4.10. Summary of data for the Y-12 ambient air monitoring program for mercury, CY 2019 4-46
4.11. NPDES compliance monitoring requirements and record for Y-12, January–December 2019 4-50
4.12. Radiological parameters monitored at Y-12, 2019 .. 4-52
4.13. Summary of Y-12 radiological monitoring plan sample requirements and 2019 results 4-53
4.15. Mercury concentrations at Outfall 014 ... 4-56
4.16. Y-12 discharge point SS6 (Sanitary Sewer Station 6), CY 2019 (all units are mg/L unless noted otherwise) ... 4-58
4.17. Serial dilutions for whole effluent toxicity testing, as a percent of effluent 4-59
4.18. Y-12 biomonitoring program summary information for Outfalls 200 and 135, 2019 4-60
4.20. Nitrate and uranium concentrations in Bear Creek ... 4-82
5. Oak Ridge National Laboratory
5.1. Summary of regulatory environmental audits, evaluations, inspections, and assessments conducted at Oak Ridge National Laboratory, 2019 ... 5-16
5.2. Environmental permits in effect at Oak Ridge National Laboratory in 2019 5-17
5.3. National Environmental Policy Act activities, 2019 ... 5-19
5.4. Oak Ridge National Laboratory Resource Conservation and Recovery Act operating permits, 2019 .. 5-22
5.5. Main elements of the Emergency Planning and Community Right-to-Know Act 5-25
5.6. Excess items requested for release and/or recycling, 2019 ... 5-28
5.7. Radiological airborne emissions from all sources at Oak Ridge National Laboratory, 2019 (Ci) ... 5-33
5.8. Radionuclide concentrations measured at Oak Ridge National Laboratory air monitoring Station 7, 2019 .. 5-47
5.9. National Pollutant Discharge Elimination System compliance at Oak Ridge National Laboratory, January through December 2019 ... 5-51
5.10. Whole effluent toxicity testing, National Pollutant Discharge Elimination System compliance at Oak Ridge National Laboratory, 2019 .. 5-52
5.11. Outfalls exceeding total residual oxidant National Pollutant Discharge Elimination System permit action level in 2019 .. 5-55
5.12. Radiological monitoring conducted under the Oak Ridge National Laboratory Water Quality Protection Plan, 2019 ... 5-57
5.13. Tennessee Macroinvertebrate Index metric values, metric scores, and index scores for White Oak Creek, First Creek, Fifth Creek, and Melton Branch, August 15 and 16, 2019 5-77
5.14. Oak Ridge National Laboratory surface water sampling locations, frequencies, and parameters, 2019 ... 5-83
5.15. Industrial and commercial user wastewater discharge permit compliance at the Oak Ridge National Laboratory Carbon Fiber Technology Facility, 2019 .. 5-83
5.16. 2019 exit pathway groundwater monitoring schedule ... 5-88
5.17. Radiological parameters detected in 2019 exit pathway groundwater monitoring 5-89
5.18. 2019 Spallation Neutron Source monitoring program schedule .. 5-93
5.19. Radiological concentrations detected in samples collected at the Spallation Neutron Source during 2019 ... 5-94

6. Oak Ridge Reservation Environmental Monitoring Program
6.1. Oak Ridge Reservation meteorological towers ... 6-2
6.2. External gamma (exposure rate) averages for the Oak Ridge Reservation, 2019 6-5
6.3. Radionuclide concentrations at Oak Ridge Reservation perimeter air monitoring stations, 2019. ... 6-7
6.4. Oak Ridge Reservation surface water sampling locations, frequencies, and parameters, 2019 ... 6-10
6.5. Concentrations of radionuclides detected in hay, 2019 (pCi/kg) ... 6-12
6.6. Concentrations of radionuclides detected in vegetables, 2019 (pCi/kg) .. 6-13
6.7. Tissue concentrations in catfish and sunfish for detected mercury, PCBs, and radionuclides, 2019 .. 6-15
6.8. Ten most problematic invasive plants on the Oak Ridge Reservation...6-19

7. Dose
7.1. Emission point parameters and receptor location used in the dose calculations, 2019...............7-3
7.2. Meteorological towers and heights used to model atmospheric dispersion from source
emissions, 2019..7-4
7.3. Calculated radiation doses to maximally exposed individuals from airborne releases from
the Oak Ridge Reservation, 2019 ..7-5
7.4. Calculated collective effective doses from airborne releases, 2019...7-6
7.5. Hypothetical effective doses from living near the Oak Ridge Reservation, Oak Ridge
National Laboratory, and East Tennessee Technology Park ambient air monitoring stations,
2019..7-8
7.6. Summary of annual maximum individual (mrem) and collective (person-rem) effective
doses from waterborne radionuclides, 2019...7-12
7.7. Summary of estimated effective doses from consumption of homegrown vegetables, 2019......7-14
7.8. Summary of maximum estimated effective doses from Oak Ridge Reservation activities to
an adult by exposure pathway, 2019..7-18
7.10. Chemical hazard quotients and estimated risks for drinking water from the Clinch River at
CRK 23 and 16, 2019..7-22
7.11. Chemical hazard quotients and estimated risks for fish caught and consumed from locations
on the Oak Ridge Reservation, 2019...7-23
Appendices

A. Glossary ... A-1
B. Climate Overview of the Oak Ridge Area B-1
C. Reference Standards and Data for Water C-1
D. National Pollutant Discharge Elimination System Noncompliance Summaries for 2019 D-1
E. Radiation ... E-1
F. Chemicals .. F-1
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAM</td>
<td>ambient air monitor</td>
<td></td>
</tr>
<tr>
<td>ACM</td>
<td>asbestos-containing material</td>
<td></td>
</tr>
<tr>
<td>AFFF</td>
<td>aqueous film-forming foams</td>
<td></td>
</tr>
<tr>
<td>AFV</td>
<td>alternative fuel vehicle</td>
<td></td>
</tr>
<tr>
<td>ALARA</td>
<td>as low as reasonably achievable</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
<td></td>
</tr>
<tr>
<td>AOC</td>
<td>area of concern</td>
<td></td>
</tr>
<tr>
<td>AOEC</td>
<td>Agent Operations Eastern Command</td>
<td></td>
</tr>
<tr>
<td>ASER</td>
<td>Oak Ridge Reservation Annual Site Environmental Report</td>
<td></td>
</tr>
<tr>
<td>AWQC</td>
<td>ambient water quality criterion</td>
<td></td>
</tr>
<tr>
<td>BCG</td>
<td>biota concentration guide</td>
<td></td>
</tr>
<tr>
<td>BCK</td>
<td>Bear Creek kilometer</td>
<td></td>
</tr>
<tr>
<td>BFK</td>
<td>Brushy Fork kilometer</td>
<td></td>
</tr>
<tr>
<td>BMAP</td>
<td>Biological Monitoring and Abatement Program</td>
<td></td>
</tr>
<tr>
<td>C&D</td>
<td>construction and demolition</td>
<td></td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
<td></td>
</tr>
<tr>
<td>CAP-88</td>
<td>Clean Air Act Assessment Package (software)</td>
<td></td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
<td></td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act of 1980</td>
<td></td>
</tr>
<tr>
<td>CEUSP</td>
<td>Consolidated Edison Uranium Solidification Project</td>
<td></td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
<td></td>
</tr>
<tr>
<td>CFTF</td>
<td>Carbon Fiber Technology Facility</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>contact-handled</td>
<td></td>
</tr>
<tr>
<td>COLEX</td>
<td>column exchange</td>
<td></td>
</tr>
<tr>
<td>CRK</td>
<td>Clinch River kilometer</td>
<td></td>
</tr>
<tr>
<td>CROET</td>
<td>Community Reuse Organization of East Tennessee</td>
<td></td>
</tr>
<tr>
<td>CRSP</td>
<td>Chestnut Ridge Security Pits</td>
<td></td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
<td></td>
</tr>
<tr>
<td>CWTS</td>
<td>Chromium Water Treatment System (ETTP)</td>
<td></td>
</tr>
<tr>
<td>CX</td>
<td>categorical exclusion</td>
<td></td>
</tr>
<tr>
<td>CY</td>
<td>calendar year</td>
<td></td>
</tr>
<tr>
<td>D&D</td>
<td>decontamination and decommissioning</td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>dichloroethene/dichloroethylene</td>
<td></td>
</tr>
<tr>
<td>DCS</td>
<td>derived concentration standard</td>
<td></td>
</tr>
<tr>
<td>DOE</td>
<td>US Department of Energy</td>
<td></td>
</tr>
<tr>
<td>DOI</td>
<td>US Department of Interior</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>EC&P</td>
<td>environmental compliance and protection</td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>effective dose</td>
<td></td>
</tr>
<tr>
<td>EESP</td>
<td>Energy Efficiency and Sustainability Program</td>
<td></td>
</tr>
<tr>
<td>EFK</td>
<td>East Fork Poplar Creek kilometer</td>
<td></td>
</tr>
<tr>
<td>EFPC</td>
<td>East Fork Poplar Creek</td>
<td></td>
</tr>
<tr>
<td>EISA</td>
<td>Energy Independence and Security Act</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>environmental management</td>
<td></td>
</tr>
<tr>
<td>EMS</td>
<td>environmental management system</td>
<td></td>
</tr>
<tr>
<td>EMWMF</td>
<td>Environmental Management Waste Management Facility</td>
<td></td>
</tr>
<tr>
<td>EO</td>
<td>executive order</td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>US Environmental Protection Agency</td>
<td></td>
</tr>
<tr>
<td>EPCRA</td>
<td>Emergency Planning and Community Right-to-Know Act</td>
<td></td>
</tr>
<tr>
<td>EPEAT</td>
<td>Electronic Product Environmental Assessment Tool</td>
<td></td>
</tr>
<tr>
<td>EPSD</td>
<td>Environmental Protection Services Division (UT-Battelle)</td>
<td></td>
</tr>
<tr>
<td>EPT</td>
<td>ephemeroptera, plecoptera, and trichoptera (taxa)</td>
<td></td>
</tr>
<tr>
<td>ES&H</td>
<td>environment, safety, and health</td>
<td></td>
</tr>
<tr>
<td>ESS</td>
<td>Environmental Surveillance System (ORNL)</td>
<td></td>
</tr>
<tr>
<td>ETTP</td>
<td>East Tennessee Technology Park</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>exposure unit</td>
<td></td>
</tr>
<tr>
<td>EUI</td>
<td>energy use intensity</td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>electric vehicle</td>
<td></td>
</tr>
<tr>
<td>FCK</td>
<td>First Creek kilometer</td>
<td></td>
</tr>
<tr>
<td>FFA</td>
<td>Federal Facility Agreement for the Oak Ridge Reservation</td>
<td></td>
</tr>
<tr>
<td>FFCA</td>
<td>Federal Facilities Compliance Agreement</td>
<td></td>
</tr>
<tr>
<td>FFK</td>
<td>Fifth Creek kilometer</td>
<td></td>
</tr>
<tr>
<td>FMD</td>
<td>ORNL Facilities Management Division</td>
<td></td>
</tr>
<tr>
<td>FWS</td>
<td>US Fish and Wildlife Service</td>
<td></td>
</tr>
<tr>
<td>FY</td>
<td>fiscal year</td>
<td></td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
<td></td>
</tr>
<tr>
<td>GI</td>
<td>green infrastructure</td>
<td></td>
</tr>
<tr>
<td>GP</td>
<td>guiding principle</td>
<td></td>
</tr>
<tr>
<td>GSF</td>
<td>gross square feet</td>
<td></td>
</tr>
<tr>
<td>HAP</td>
<td>hazardous air pollutant</td>
<td></td>
</tr>
<tr>
<td>HFIR</td>
<td>High Flux Isotope Reactor</td>
<td></td>
</tr>
<tr>
<td>HPSB</td>
<td>high-performance sustainable building</td>
<td></td>
</tr>
<tr>
<td>HQ</td>
<td>hazard quotient</td>
<td></td>
</tr>
<tr>
<td>HVC</td>
<td>Hardin Valley Campus</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>identification number</td>
<td></td>
</tr>
<tr>
<td>IDMS</td>
<td>Integrated Document Management System (UT-Battelle)</td>
<td></td>
</tr>
<tr>
<td>IRIS</td>
<td>Integrated Risk Information System</td>
<td></td>
</tr>
</tbody>
</table>
ISMS Integrated Safety Management System
ISO International Organization for Standardization
Isotek Isotek Systems, LLC

LEED Leadership in Energy and Environmental Design
LID low-impact design
LLW low-level (radioactive) waste

MARSAME *Multi-Agency Radiation Survey and Assessment of Materials and Equipment Manual*
MARSSIM *Multi-Agency Radiation Survey and Site Investigation Manual*
MBK Mill Branch kilometer
MCK McCoy Branch kilometer
MCL maximum contaminant level
MDF Manufacturing Demonstration Facility
MEI maximally exposed individual
MEK Melton Branch kilometer
MIK Mitchell Branch kilometer
MOA memorandum of agreement
MSL mean sea level
MSRE Molten Salt Reactor Experiment
MT meteorological tower (followed by a numeral as in “MT2”)

NAAQS National Ambient Air Quality Standards
NCRP National Council on Radiation Protection and Management
NEPA National Environmental Policy Act
NESHAPs National Emission Standards for Hazardous Air Pollutants
NNSA National Nuclear Security Administration
NPDES National Pollutant Discharge Elimination System
NPL National Priorities List (EPA)
NRC US Nuclear Regulatory Commission
NRCS Natural Resources Conservation Service
NRHP National Register of Historic Places
NSF-ISR National Science Foundation International Strategic Registrations, Ltd.
NTRC National Transportation Research Center
NWSol North Wind Solutions, LLC

ODS ozone-depleting substance
OMP operational monitoring plan
OREM DOE Oak Ridge Office of Environmental Management
ORGDP Oak Ridge Gaseous Diffusion Plant
ORISE Oak Ridge Institute for Science and Education
ORNL Oak Ridge National Laboratory
ORO DOE Oak Ridge Office
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>Oak Ridge Reservation</td>
</tr>
<tr>
<td>ORRLF</td>
<td>Oak Ridge Reservation Landfill</td>
</tr>
<tr>
<td>ORSSAB</td>
<td>Oak Ridge Site Specific Advisory Board</td>
</tr>
<tr>
<td>ORWMA</td>
<td>Oak Ridge Wildlife Management Area</td>
</tr>
<tr>
<td>OST</td>
<td>Office of Secure Transportation</td>
</tr>
<tr>
<td>OTC</td>
<td>once-through cooling</td>
</tr>
<tr>
<td>P</td>
<td>pollution prevention</td>
</tr>
<tr>
<td>P2</td>
<td>pollution prevention</td>
</tr>
<tr>
<td>P2/WMin</td>
<td>pollution prevention/waste minimization</td>
</tr>
<tr>
<td>PAM</td>
<td>perimeter air monitoring (station)</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PCE</td>
<td>tetrachloroethene</td>
</tr>
<tr>
<td>PEMS</td>
<td>Predictive Emissions Monitoring System</td>
</tr>
<tr>
<td>PFAS</td>
<td>per- and polyfluoroalkyl substances</td>
</tr>
<tr>
<td>PFOA</td>
<td>perfluorooctanoic acid</td>
</tr>
<tr>
<td>PFOS</td>
<td>perfluorooctane sulfonate</td>
</tr>
<tr>
<td>PFP</td>
<td>pre-fire plan</td>
</tr>
<tr>
<td>PM</td>
<td>particulate matter</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>particulate matter with an aerodynamic diameter ≤ 10 µm</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>fine particulate matter with an aerodynamic diameter ≤ 2.5 µm</td>
</tr>
<tr>
<td>PWTC</td>
<td>Process Waste Treatment Complex</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>QMS</td>
<td>quality management system</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development</td>
</tr>
<tr>
<td>RA</td>
<td>remedial action</td>
</tr>
<tr>
<td>Rad-NESHAPs</td>
<td>National Emission Standards for Hazardous Air Pollutants for Radionuclides</td>
</tr>
<tr>
<td>RATA</td>
<td>relative accuracy test audit</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RH</td>
<td>remote-handled</td>
</tr>
<tr>
<td>RICE</td>
<td>reciprocating internal combustion engine</td>
</tr>
<tr>
<td>ROD</td>
<td>record of decision</td>
</tr>
<tr>
<td>RSI</td>
<td>Restoration Services, Inc.</td>
</tr>
<tr>
<td>SARA</td>
<td>Superfund Amendments and Reauthorization Act</td>
</tr>
<tr>
<td>SBMS</td>
<td>Standards-Based Management System (UT-Battelle)</td>
</tr>
<tr>
<td>SC</td>
<td>DOE Office of Science</td>
</tr>
<tr>
<td>SD</td>
<td>storm water outfall/storm drain</td>
</tr>
<tr>
<td>SDWA</td>
<td>Safe Drinking Water Act</td>
</tr>
<tr>
<td>SNS</td>
<td>Spallation Neutron Source</td>
</tr>
<tr>
<td>SODAR</td>
<td>sonic detection and ranging</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SOF</td>
<td>sum of fractions</td>
</tr>
<tr>
<td>SOP</td>
<td>state operating permit</td>
</tr>
<tr>
<td>SPCC</td>
<td>spill prevention, control, and countermeasures</td>
</tr>
<tr>
<td>SPMD</td>
<td>semipermeable membrane device</td>
</tr>
<tr>
<td>STP</td>
<td>sewage treatment plant</td>
</tr>
<tr>
<td>SWMU</td>
<td>solid waste management unit</td>
</tr>
<tr>
<td>SWPP</td>
<td>storm water pollution prevention</td>
</tr>
<tr>
<td>SWPPP</td>
<td>storm water pollution prevention plan</td>
</tr>
<tr>
<td>SWSA</td>
<td>solid waste storage area</td>
</tr>
<tr>
<td>TCE</td>
<td>trichloroethene/trichloroethylene</td>
</tr>
<tr>
<td>TDEC</td>
<td>Tennessee Department of Environment and Conservation</td>
</tr>
<tr>
<td>TM</td>
<td>technical memorandum</td>
</tr>
<tr>
<td>TMDL</td>
<td>total maximum daily load</td>
</tr>
<tr>
<td>TMI</td>
<td>Tennessee Macroinvertebrate Index</td>
</tr>
<tr>
<td>TRI</td>
<td>toxic (chemical) release inventory</td>
</tr>
<tr>
<td>TRO</td>
<td>total residual oxidant</td>
</tr>
<tr>
<td>TRU</td>
<td>transuranic</td>
</tr>
<tr>
<td>TSCA</td>
<td>Toxic Substances Control Act</td>
</tr>
<tr>
<td>TSS</td>
<td>total suspended solids</td>
</tr>
<tr>
<td>TVA</td>
<td>Tennessee Valley Authority</td>
</tr>
<tr>
<td>TWPC</td>
<td>Transuranic Waste Processing Center</td>
</tr>
<tr>
<td>TWRA</td>
<td>Tennessee Wildlife Resources Agency</td>
</tr>
<tr>
<td>UMC</td>
<td>unneeded materials and chemicals</td>
</tr>
<tr>
<td>USDA</td>
<td>US Department of Agriculture</td>
</tr>
<tr>
<td>USGBC</td>
<td>US Green Building Council</td>
</tr>
<tr>
<td>UST</td>
<td>underground storage tank</td>
</tr>
<tr>
<td>UT</td>
<td>University of Tennessee</td>
</tr>
<tr>
<td>UT-Battelle</td>
<td>UT-Battelle, LLC</td>
</tr>
<tr>
<td>UT-Dallas</td>
<td>University of Texas at Dallas</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>WBK</td>
<td>Walker Branch kilometer</td>
</tr>
<tr>
<td>WCK</td>
<td>White Oak Creek kilometer</td>
</tr>
<tr>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant</td>
</tr>
<tr>
<td>WOC</td>
<td>White Oak Creek</td>
</tr>
<tr>
<td>WOD</td>
<td>White Oak Dam</td>
</tr>
<tr>
<td>WQC</td>
<td>water quality criterion</td>
</tr>
<tr>
<td>WQPP</td>
<td>water quality protection plan</td>
</tr>
<tr>
<td>WRRP</td>
<td>Water Resources Restoration Program</td>
</tr>
<tr>
<td>WSR</td>
<td>waste services representatives</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Y</td>
<td>Y-12 or Y-12 National Security Complex</td>
</tr>
<tr>
<td>Z</td>
<td>ZPR Zero-power Reactor</td>
</tr>
</tbody>
</table>
Units of Measure and Conversion Factors*

<table>
<thead>
<tr>
<th>Units of measure and their abbreviations</th>
<th>Units of measure and their abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>acre</td>
<td>micrometer</td>
</tr>
<tr>
<td>becquerel</td>
<td>millicurie</td>
</tr>
<tr>
<td>British thermal unit</td>
<td>milligram</td>
</tr>
<tr>
<td>centimeter</td>
<td>millimeter</td>
</tr>
<tr>
<td>curie</td>
<td>million</td>
</tr>
<tr>
<td>day</td>
<td>million gallons per day</td>
</tr>
<tr>
<td>degrees Celsius</td>
<td>°C</td>
</tr>
<tr>
<td>degrees Fahrenheit</td>
<td>°F</td>
</tr>
<tr>
<td>disintegrations per minute</td>
<td>dpm</td>
</tr>
<tr>
<td>foot</td>
<td>ft</td>
</tr>
<tr>
<td>gallon</td>
<td>gal</td>
</tr>
<tr>
<td>gallons per minute</td>
<td>gal/min</td>
</tr>
<tr>
<td>gram</td>
<td>g</td>
</tr>
<tr>
<td>gray</td>
<td>Gy</td>
</tr>
<tr>
<td>gross square feet</td>
<td>gsf</td>
</tr>
<tr>
<td>hectare</td>
<td>ha</td>
</tr>
<tr>
<td>hour</td>
<td>h</td>
</tr>
<tr>
<td>inch</td>
<td>in.</td>
</tr>
<tr>
<td>joule</td>
<td>J</td>
</tr>
<tr>
<td>kilocurie</td>
<td>kCi</td>
</tr>
<tr>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>kilometer</td>
<td>km</td>
</tr>
<tr>
<td>kilowatt</td>
<td>kW</td>
</tr>
<tr>
<td>linear feet</td>
<td>LF</td>
</tr>
<tr>
<td>liter</td>
<td>L</td>
</tr>
<tr>
<td>megajoule</td>
<td>MJ</td>
</tr>
<tr>
<td>megawatt</td>
<td>MW</td>
</tr>
<tr>
<td>megawatt-hour</td>
<td>MWh</td>
</tr>
<tr>
<td>meter</td>
<td>m</td>
</tr>
<tr>
<td>metric tons</td>
<td>MT</td>
</tr>
<tr>
<td>microcurie</td>
<td>µCi</td>
</tr>
<tr>
<td>microgram</td>
<td>µg</td>
</tr>
<tr>
<td>Quantitative prefixes</td>
<td>Quantitative prefixes</td>
</tr>
<tr>
<td>exa</td>
<td>atto</td>
</tr>
<tr>
<td>peta</td>
<td>femto</td>
</tr>
<tr>
<td>tera</td>
<td>pico</td>
</tr>
<tr>
<td>giga</td>
<td>nano</td>
</tr>
<tr>
<td>mega</td>
<td>micro</td>
</tr>
<tr>
<td>kilo</td>
<td>milli</td>
</tr>
<tr>
<td>hectar</td>
<td>centi</td>
</tr>
<tr>
<td>deka</td>
<td>deci</td>
</tr>
</tbody>
</table>

Due to differing permit reporting requirements and instrument capabilities, various units of measurement are used in this report. The provided list of units of measure and conversion factors is intended to help readers make approximate conversions to other units as needed for specific calculations and comparisons.
Unit conversions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion</th>
<th>Equivalent</th>
<th>Unit</th>
<th>Conversion</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td>Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in.</td>
<td>$\times 2.54$</td>
<td>cm</td>
<td>cm</td>
<td>$\times 0.394$</td>
<td>in.</td>
</tr>
<tr>
<td>ft</td>
<td>$\times 0.305$</td>
<td>m</td>
<td>m</td>
<td>$\times 3.28$</td>
<td>ft</td>
</tr>
<tr>
<td>mile</td>
<td>$\times 1.61$</td>
<td>km</td>
<td>km</td>
<td>$\times 0.621$</td>
<td>mile</td>
</tr>
<tr>
<td>acre</td>
<td>$\times 0.405$</td>
<td>ha</td>
<td>ha</td>
<td>$\times 2.47$</td>
<td>acre</td>
</tr>
<tr>
<td>ft²</td>
<td>$\times 0.093$</td>
<td>m²</td>
<td>m²</td>
<td>$\times 10.764$</td>
<td>ft²</td>
</tr>
<tr>
<td>mile²</td>
<td>$\times 2.59$</td>
<td>km²</td>
<td>km²</td>
<td>$\times 0.386$</td>
<td>mile²</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td>Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft³</td>
<td>$\times 0.028$</td>
<td>m³</td>
<td>m³</td>
<td>$\times 35.31$</td>
<td>ft³</td>
</tr>
<tr>
<td>qt (US liquid)</td>
<td>$\times 0.946$</td>
<td>L</td>
<td>L</td>
<td>$\times 1.057$</td>
<td>qt (US liquid)</td>
</tr>
<tr>
<td>gal</td>
<td>$\times 3.7854118$</td>
<td>L</td>
<td>L</td>
<td>$\times 0.264172051$</td>
<td>gal</td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
<td>Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppb</td>
<td>$\times 1$</td>
<td>µg/kg</td>
<td>µg/kg</td>
<td>$\times 1$</td>
<td>ppb</td>
</tr>
<tr>
<td>ppm</td>
<td>$\times 1$</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>$\times 1$</td>
<td>ppm</td>
</tr>
<tr>
<td>ppb</td>
<td>$\times 1$</td>
<td>µg/L</td>
<td>µg/L</td>
<td>$\times 1$</td>
<td>ppb</td>
</tr>
<tr>
<td>ppm</td>
<td>$\times 1$</td>
<td>mg/L</td>
<td>mg/L</td>
<td>$\times 1$</td>
<td>ppm</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lb</td>
<td>$\times 0.4536$</td>
<td>kg</td>
<td>kg</td>
<td>$\times 2.205$</td>
<td>lb</td>
</tr>
<tr>
<td>lbm</td>
<td>$\times 0.45356$</td>
<td>kg</td>
<td>kg</td>
<td>$\times 2.2046226$</td>
<td>lbm</td>
</tr>
<tr>
<td>ton, short</td>
<td>$\times 907.1847$</td>
<td>kg</td>
<td>kg</td>
<td>$\times 0.00110231131$</td>
<td>ton, short</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td></td>
<td>°F = (9/5)°C + 32</td>
<td>³F</td>
<td>³F = (5/9)(F–32)</td>
<td>°C</td>
</tr>
<tr>
<td>Bq</td>
<td>$\times 2.7 \times 10^{11}$</td>
<td>Ci</td>
<td>Ci</td>
<td>$\times 3.7 \times 10^{10}$</td>
<td>Bq</td>
</tr>
<tr>
<td>Bq</td>
<td>$\times 27$</td>
<td>pCi</td>
<td>pCi</td>
<td>$\times 0.037$</td>
<td>Bq</td>
</tr>
<tr>
<td>mSv</td>
<td>$\times 100$</td>
<td>mrem</td>
<td>mrem</td>
<td>$\times 0.01$</td>
<td>mSv</td>
</tr>
<tr>
<td>Sv</td>
<td>$\times 100$</td>
<td>rem</td>
<td>rem</td>
<td>$\times 0.01$</td>
<td>Sv</td>
</tr>
<tr>
<td>nCi</td>
<td>$\times 1,000$</td>
<td>pCi</td>
<td>pCi</td>
<td>$\times 0.001$</td>
<td>nCi</td>
</tr>
<tr>
<td>mCi/km²</td>
<td>$\times 1$</td>
<td>nCi/m²</td>
<td>nCi/m²</td>
<td>$\times 1$</td>
<td>mCi/km²</td>
</tr>
<tr>
<td>dpm/L</td>
<td>$\times 0.45 \times 10^{9}$</td>
<td>µCi/cm³</td>
<td>µCi/cm³</td>
<td>$\times 2.22 \times 10^{9}$</td>
<td>dpm/L</td>
</tr>
<tr>
<td>pCi/L</td>
<td>$\times 10^{9}$</td>
<td>µCi/mL</td>
<td>µCi/mL</td>
<td>$\times 10^{9}$</td>
<td>pCi/L</td>
</tr>
<tr>
<td>pCi/m³</td>
<td>$\times 10^{12}$</td>
<td>µCi/cm³</td>
<td>µCi/cm³</td>
<td>$\times 10^{12}$</td>
<td>pCi/m³</td>
</tr>
</tbody>
</table>
Acknowledgments

The US Department of Energy (DOE) is responsible for producing this document. DOE acknowledges with deep appreciation the efforts of the following individuals who provided valuable resources, information, and technical data and management, administrative, field, or other support.

<table>
<thead>
<tr>
<th>ENVIRONMENTAL MANAGEMENT</th>
<th>Y-12 COMPLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betsy Bruken</td>
<td>Gary Beck</td>
</tr>
<tr>
<td>Adam Bruhl</td>
<td>Brandy Belicek</td>
</tr>
<tr>
<td>Mark Cleveland</td>
<td>Betsy Bruken</td>
</tr>
<tr>
<td>Kim Cole</td>
<td>Vickie Brumback</td>
</tr>
<tr>
<td>Kevin Crow</td>
<td>Mark Burdette</td>
</tr>
<tr>
<td>Katie Davis</td>
<td>Sara Cornwell</td>
</tr>
<tr>
<td>Steve Foster</td>
<td>Laura Cunningham</td>
</tr>
<tr>
<td>Justin Frazer</td>
<td>Jennifer Dixon</td>
</tr>
<tr>
<td>Glen Galen</td>
<td>Stan Duke</td>
</tr>
<tr>
<td>Sidney Garland</td>
<td>Howell Estes</td>
</tr>
<tr>
<td>Sherry Gibson</td>
<td>Steve Field</td>
</tr>
<tr>
<td>Stephen Goodpasture</td>
<td>Matthew Frost</td>
</tr>
<tr>
<td>Matthew Hagenow</td>
<td>Paisley Gunter</td>
</tr>
<tr>
<td>Amber Harshman</td>
<td>Kim Hanzelka</td>
</tr>
<tr>
<td>Kevin Ironside</td>
<td>William C. Hurst</td>
</tr>
<tr>
<td>Charles Justice</td>
<td>Steve Jones</td>
</tr>
<tr>
<td>Kathy Kelley</td>
<td>Kris Kinder</td>
</tr>
<tr>
<td>Richard Ketelle</td>
<td>Stacey Kildzejs</td>
</tr>
<tr>
<td>Rodney Kingrea</td>
<td>Michelle Kunz</td>
</tr>
<tr>
<td>Jeff Maddox</td>
<td>Cheryl LaBorde</td>
</tr>
<tr>
<td>Jeff Murphy</td>
<td>Wesley Long</td>
</tr>
<tr>
<td>Tammy Phillips</td>
<td>Stacey Loveless</td>
</tr>
<tr>
<td>Tony Poole</td>
<td>Terry Mathews</td>
</tr>
<tr>
<td>Annette Primrose</td>
<td>Jane Nations</td>
</tr>
<tr>
<td>Gill Salade</td>
<td>Terry Nore</td>
</tr>
<tr>
<td>Cheryl Sayler</td>
<td>Elizabeth Owens</td>
</tr>
<tr>
<td>Eileen Shea</td>
<td>Aprill Patterson</td>
</tr>
<tr>
<td>Natasha Thomsen</td>
<td>Tony Poole</td>
</tr>
<tr>
<td>Wesley White</td>
<td>Sandra Reagan</td>
</tr>
<tr>
<td>Steven Wood</td>
<td>Paula Roddy</td>
</tr>
<tr>
<td></td>
<td>Beth Schultz</td>
</tr>
<tr>
<td></td>
<td>Craig Schwartz</td>
</tr>
<tr>
<td></td>
<td>Stephen Shults</td>
</tr>
<tr>
<td></td>
<td>Brad Skaggs</td>
</tr>
<tr>
<td></td>
<td>Johnny Skinner</td>
</tr>
<tr>
<td></td>
<td>James Stinnett</td>
</tr>
<tr>
<td></td>
<td>Brenda Vann</td>
</tr>
<tr>
<td></td>
<td>Larissa Welch</td>
</tr>
<tr>
<td></td>
<td>Jeannette Widman</td>
</tr>
<tr>
<td></td>
<td>Rebekah Young</td>
</tr>
</tbody>
</table>

ORNL

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy Albaugh</td>
<td></td>
</tr>
<tr>
<td>Carrie Barber</td>
<td></td>
</tr>
<tr>
<td>Gio Barton</td>
<td></td>
</tr>
<tr>
<td>Brenda Becker-Khaleel</td>
<td></td>
</tr>
<tr>
<td>Chris Bently</td>
<td></td>
</tr>
</tbody>
</table>

xxix