Appendix F. Radiation
Appendix F. Radiation

This appendix presents basic facts about radiation. The information is intended to be a basis for understanding the potential doses associated with releases of radionuclides from the Oak Ridge Reservation (ORR), not as a comprehensive discussion of radiation and its effects on the environment and biological systems.

Radiation comes from natural and human-made sources. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon in air; potassium in food and water; and uranium, thorium, and radium in the earth’s crust are all sources of radiation. The following discussion describes important aspects of radiation, including atoms and isotopes; types, sources, and pathways of radiation; radiation measurement; and dose information.

F.1 Atoms and Isotopes

All matter is made up of atoms. An atom is “a unit of matter consisting of a single nucleus surrounded by a number of electrons equal to the number of protons in the nucleus” (Alter 1986). The number of protons in the nucleus determines an element’s atomic number or chemical identity. With the exception of hydrogen, the nucleus of each type of atom also contains at least one neutron. Unlike protons, the neutrons may vary in number among atoms of the same element. The number of neutrons and protons determines the atomic weight. Atoms of the same element that have different numbers of neutrons are called isotopes. In other words, isotopes have the same chemical properties but different atomic weights (Fig. F.1).

For example, the element uranium has 92 protons. All isotopes of uranium, therefore, have 92 protons. However, each uranium isotope has a different number of neutrons:

- uranium-238 has 92 protons and 146 neutrons;
- uranium-235 has 92 protons and 143 neutrons; and
- uranium-234 has 92 protons and 142 neutrons.

Some isotopes are stable, or nonradioactive; some are radioactive. Radioactive isotopes are called “radionuclides” or “radioisotopes.” In an attempt to become stable, radionuclides “throw away,” or emit, rays or particles. This emission of rays and particles is known as radioactive decay. Each radioisotope has a “radioactive half-life,” which is the average time that it takes for half of a specified number of atoms to decay. Half-lives can be very short (fractions of a second) or very long (millions of years), depending on the isotope (Table F.1).
Table F.1. Radionuclide half-lives

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Symbol</th>
<th>Half-life</th>
<th>Radionuclide</th>
<th>Symbol</th>
<th>Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americium-241</td>
<td>241Am</td>
<td>432.2 years</td>
<td>Plutonium-238</td>
<td>238Pu</td>
<td>87.75 years</td>
</tr>
<tr>
<td>Americium-243</td>
<td>243Am</td>
<td>7.38E+3 years</td>
<td>Plutonium-239</td>
<td>239Pu</td>
<td>2.41E+4 years</td>
</tr>
<tr>
<td>Antimony-125</td>
<td>Sb</td>
<td>2.77 years</td>
<td>Plutonium-240</td>
<td>240Pu</td>
<td>6.569E+3 years</td>
</tr>
<tr>
<td>Argon-41</td>
<td>Ar</td>
<td>1.827 hours</td>
<td>Potassium-40</td>
<td>K</td>
<td>1.2777E+9 years</td>
</tr>
<tr>
<td>Beryllium-7</td>
<td>Be</td>
<td>53.44 days</td>
<td>Promethium-147</td>
<td>147Pm</td>
<td>2.6234 years</td>
</tr>
<tr>
<td>Californium-252</td>
<td>252Cf</td>
<td>2.639 years</td>
<td>Protactinium-234m</td>
<td>234mPa</td>
<td>1.17 minutes</td>
</tr>
<tr>
<td>Carbon-14</td>
<td>14C</td>
<td>5.730E+3 years</td>
<td>Radium-226</td>
<td>226Ra</td>
<td>1.6E+3 years</td>
</tr>
<tr>
<td>Cerium-141</td>
<td>141Ce</td>
<td>32.50 days</td>
<td>Radium-228</td>
<td>228Ra</td>
<td>5.75 years</td>
</tr>
<tr>
<td>Cerium-143</td>
<td>143Ce</td>
<td>1.38 days</td>
<td>Ruthenium-103</td>
<td>103Ru</td>
<td>39.35 days</td>
</tr>
<tr>
<td>Cerium-144</td>
<td>144Ce</td>
<td>284.3 days</td>
<td>Ruthenium-106</td>
<td>106Ru</td>
<td>368.2 days</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>134Cs</td>
<td>2.062 years</td>
<td>Strontium-89</td>
<td>89Sr</td>
<td>50.55 days</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>137Cs</td>
<td>30.17 years</td>
<td>Strontium-90</td>
<td>90Sr</td>
<td>28.6 years</td>
</tr>
<tr>
<td>Cesium-138</td>
<td>138Cs</td>
<td>32.2 min</td>
<td>Technetium-99</td>
<td>99Tc</td>
<td>2.13E+5 years</td>
</tr>
<tr>
<td>Cobalt-58</td>
<td>58Co</td>
<td>70.80 days</td>
<td>Thorium-228</td>
<td>228Th</td>
<td>1.9132 years</td>
</tr>
<tr>
<td>Cobalt-60</td>
<td>60Co</td>
<td>5.271 years</td>
<td>Thorium-230</td>
<td>230Th</td>
<td>7.54E+4 years</td>
</tr>
<tr>
<td>Curium-242</td>
<td>242Cm</td>
<td>163.2 days</td>
<td>Thorium-232</td>
<td>232Th</td>
<td>1.405E+10 years</td>
</tr>
<tr>
<td>Curium-244</td>
<td>244Cm</td>
<td>18.11 years</td>
<td>Thorium-234</td>
<td>234Th</td>
<td>2.41E+1 day</td>
</tr>
<tr>
<td>Iodine-129</td>
<td>129I</td>
<td>157E+7 years</td>
<td>Tritium</td>
<td>3H</td>
<td>12.28 years</td>
</tr>
<tr>
<td>Iodine-131</td>
<td>131I</td>
<td>8.04 days</td>
<td>Uranium-234</td>
<td>234U</td>
<td>2.445E+5 years</td>
</tr>
<tr>
<td>Krypton-85</td>
<td>85Kr</td>
<td>10.72 years</td>
<td>Uranium-235</td>
<td>235U</td>
<td>7.038E+8 years</td>
</tr>
<tr>
<td>Krypton-88</td>
<td>88Kr</td>
<td>2.84 hours</td>
<td>Uranium-236</td>
<td>236U</td>
<td>2.3415E+7 years</td>
</tr>
<tr>
<td>Manganese-54</td>
<td>54Mn</td>
<td>312.7 days</td>
<td>Uranium-238</td>
<td>238U</td>
<td>4.468E+9 years</td>
</tr>
<tr>
<td>Neptunium-237</td>
<td>237Np</td>
<td>2.14E+6 days</td>
<td>Xenon-133</td>
<td>133Xe</td>
<td>5.245E+9 years</td>
</tr>
<tr>
<td>Niobium-95</td>
<td>95Nb</td>
<td>35.06 days</td>
<td>Xenon-135</td>
<td>135Xe</td>
<td>9.11 hours</td>
</tr>
<tr>
<td>Osmium-185</td>
<td>185Os</td>
<td>93.6 days</td>
<td>Yttrium-90</td>
<td>90Y</td>
<td>64.1 hours</td>
</tr>
<tr>
<td>Phosphorus-32</td>
<td>32P</td>
<td>14.29 days</td>
<td>Zirconium-95</td>
<td>95Zr</td>
<td>64.02 days</td>
</tr>
<tr>
<td>Polonium-210</td>
<td>210Po</td>
<td>138.378 days</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F.2 Radiation

Radiation, or radiant energy, is energy in the form of waves or particles moving through space. Visible light, heat, radio waves, and alpha particles are examples of radiation. When people feel warmth from sunlight, they are actually absorbing the radiant energy emitted by the sun.

Electromagnetic radiation is radiation in the form of electromagnetic waves. Examples include gamma rays, ultraviolet light, and radio waves. Particulate radiation is radiation in the form of particles. Examples include alpha and beta particles. Radiation also is characterized as ionizing or nonionizing because of the way in which it interacts with matter.

F.2.1 Ionizing Radiation

Normally, an atom has an equal number of protons and electrons; however, atoms can lose or gain electrons in a process known as ionization. Some forms of radiation (called ionizing radiation) can ionize atoms by “knocking” electrons off atoms. Examples of ionizing radiation include alpha, beta, and gamma radiation.

Ionizing radiation is capable of changing the chemical state of matter and subsequently causing biological damage. By this mechanism, it is potentially harmful to human health.
F.2.2 Nonionizing Radiation

Nonionizing radiation bounces off or passes through matter without displacing electrons. Examples include visible light and radio waves. At this time, it is unclear whether nonionizing radiation is harmful to human health. In the discussion that follows, the term “radiation” is used to describe ionizing radiation.

F.3 Sources of Radiation

Radiation is everywhere. Most occurs naturally; a small percentage is human-made. Naturally occurring radiation is known as background radiation.

F.3.1 Background Radiation

Many materials are naturally radioactive. In fact, this naturally occurring radiation is the major source of radiation in the environment. Although people have little control over the amount of background radiation to which they are exposed, this exposure must be put into perspective. Background radiation remains relatively constant over time and is present in the environment today much as it was hundreds of years ago.

Sources of background radiation include uranium in the earth, radon in the air, and potassium in food. Background radiation is categorized as cosmic, terrestrial, or internal, depending on its origin.

F.3.1.1 Cosmic Radiation

Energetically charged particles from outer space continuously hit the earth’s atmosphere. These particles and the secondary particles and photons they create are called cosmic radiation. Because the atmosphere provides some shielding against cosmic radiation, the intensity of this radiation increases with altitude above sea level. For example, a person in Denver, Colorado, is exposed to more cosmic radiation than a person in New Orleans, Louisiana.

F.3.1.2 Terrestrial Radiation

Terrestrial radiation refers to radiation emitted from radioactive materials in the earth’s rocks, soils, and minerals. Radon (Rn), radon progeny (the relatively short-lived decay products from the decay of the radon isotope ^{222}Rn), potassium (^{40}K), isotopes of thorium (Th), and isotopes of uranium (U) are the elements responsible for most terrestrial radiation.

F.3.1.3 Internal Radiation

Radionuclides in the environment enter the body with the air people breathe and the foods they eat. They also can enter through an open wound. Natural radionuclides that can be inhaled and ingested include isotopes of uranium and its progeny, especially radon (^{222}Rn) and its progeny, thoron (^{220}Rn) and its progeny, potassium (^{40}K), rubidium (^{87}Rb), and carbon (^{14}C). Radionuclides contained in the body are dominated by ^{40}K and ^{210}Po; others include ^{87}Rb and ^{14}C (NCRP 1987).

F.3.4 Human-Made Radiation

In addition to background radiation, there are human-made sources of radiation to which most people are exposed. Examples include consumer products, medical sources, fallout from atmospheric atomic bomb tests, and industrial by-products. No atmospheric testing of atomic weapons has occurred since 1980 (NCRP 1987).
F.3.5 Consumer Products

Some consumer products are sources of radiation. The radiation in some of these products, such as smoke detectors and airport X-ray baggage inspection systems, is essential to the performance of the device. In other products, such as televisions and tobacco products, the radiation occurs incidentally to the product’s function.

F.3.6 Medical Sources

Radiation is an important tool of diagnostic medicine and treatment and is the main source of exposure to the public from human-made radiation. Exposure is deliberate and directly beneficial to the patients exposed. In general, medical exposures from diagnostic or therapeutic X rays result from beams directed to specific areas of the body. Thus, all body organs generally are not irradiated uniformly. Nuclear medicine examinations and treatments involve the internal administration of radioactive compounds, or radiopharmaceuticals, by injection, inhalation, consumption, or insertion. Even then, radionuclides are not distributed uniformly throughout the body. Radiation and radioactive materials also are used in the preparation of medical instruments, including the sterilization of heat-sensitive products such as plastic heart valves.

F.3.7 Other Sources

Radioactive fallout, the by-product of nuclear-weapons testing in the atmosphere, is a source of radiation. Other sources of radiation include emissions of radioactive materials from nuclear facilities such as uranium mines, fuel-processing plants, and nuclear power plants; transportation of radioactive materials; and emissions from mineral-extraction facilities.

F.4 Pathways of Radionuclides

People can be exposed to radionuclides in the environment through a number of routes (Fig. F.2). Potential routes for internal and/or external exposure are referred to as pathways. For example, radionuclides in the air could fall on a pasture. The grass then could be eaten by cows, and the radionuclides deposited on the grass would show up in milk. People drinking the milk would be exposed to this radiation. People could also inhale the airborne radionuclides. Similarly, radionuclides in water could be ingested by fish, and people eating the fish would also ingest the radionuclides in the fish tissue. People swimming in the water would be exposed also.

F.5 Measuring Radiation

To determine the possible effects of radiation on the health of the environment and people, the radiation must be measured. More precisely, its potential to cause damage must be ascertained.

F.5.1 Activity

When we measure the amount of radiation in the environment, what is actually being measured is the rate of radioactive decay, or activity. The rate of decay varies widely among the various radioisotopes. For that reason, 1 g of a radioactive substance may contain the same amount of
activity as several tons of another material. This activity is expressed in a unit of measure known as a curie (Ci). More specifically, one curie equals 3.7×10^{10} (37,000,000,000) atomic disintegrations per second (dps). In the international system of units, 1 dps equals 1 becquerel (Bq).

F.5.2 Absorbed Dose

The total amount of energy absorbed per unit mass of the exposed material as a result of exposure to radiation is expressed in a unit of measure known as a rad. In this case, it is the effect of the absorbed energy (the biological damage that it causes) that is important, not the actual amount. In the international system of units, 100 rad equals 1 gray (Gy).

F.5.3 Effective Dose

The measure of potential biological damage to the body caused by exposure to and subsequent absorption of radiation is expressed in a unit of measure known as a rem. For radiation protection purposes, one rem of any type of radiation has the same total damaging effect. Because a rem represents a fairly large equivalent dose, it is usually expressed as millirem (mrem), which is $1/1000$ of a rem. In the international system of units, 1 sievert (Sv) equals 100 rem; 1 millisievert (mSv) equals 100 mrem. In previous years effective dose equivalent (EDE) was the dose unit used in the *Annual Site Environmental Report*; however, beginning in 2007, the dose unit used is effective dose (ED). The ED, as was the EDE, is the weighted sum of equivalent dose over specified tissues or organs. For the ED there are tissue weighting factors for twelve tissues or organs (as well as one for remainder organs and tissues), as compared to the EDE there were six tissue weighting factors (and one for remainder organs and tissues). In addition to tissue weighting factor modifications, there have been updates to the lung model, gastrointestinal absorption fractions, and biokinetic models used for selected elements. Specific types of EDs are defined as follows:

- committed effective dose: the weight sum of the committed equivalent dose in specified tissues in the human body during the 50-year period following intake; and
- collective effective dose: the product of the mean effective dose for a population and the number of persons in the population.

F.5.4 Dose Determination

Determining dose is an involved process in which complex mathematical equations based on several factors, including the type of radiation, the rate of exposure, weather conditions, and typical diet, are used. Basically, radioactive decay, or activity, generates radiant energy. People absorb some of the energy to which they are exposed. The effect of this absorbed energy is responsible for an individual’s dose. Whether radiation is natural or human-made, it has the same effect on people.

Many terms are used to report dose. The terms take several factors into account, including the amount of radiation absorbed, the organ absorbing the radiation, and the effect of the radiation over a 50-year period. The term “dose,” in this report means the committed effective dose E, which is the effective dose that will be received during a specified time (50 years) from radionuclides taken into the body in the current year, and the effective dose due to exposure during the year to penetrating radiation from sources external to the body.

F.5.5 Dose Coefficient

A dose coefficient is defined as the effective dose received from exposure to a unit quantity of a radionuclide by way of a specific exposure pathway. There are two types of dose coefficients. One type gives the committed effective dose (rem) resulting from intake (by inhalation and ingestion) of a unit activity (1.0 µCi) of a radionuclide. The second gives the effective dose rate (millirem per year) per unit activity (1.0 µCi) of a radionuclide in a unit (cubic or square centimeters) of an environmental
F.5.6 Comparison of Dose Levels

Table F.2 presents a scale of dose levels, with an example of the type of exposure that may cause such a dose, or the special significance of such a dose. This information is intended to help the reader become familiar with a range of doses that various individuals may receive.

Table F.2. Comparison and description of various dose levels

<table>
<thead>
<tr>
<th>Dose level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mrem</td>
<td>Approximate daily dose from natural background radiation, including radon</td>
</tr>
<tr>
<td>2.5 mrem</td>
<td>Cosmic dose to a person on a one-way airplane flight from New York to Los Angeles</td>
</tr>
<tr>
<td>10 mrem</td>
<td>Annual exposure limit set by the Environmental Protection Agency (EPA) for exposures from airborne emissions from operations of nuclear fuel cycle facilities, including power plants, uranium mines, and mills</td>
</tr>
<tr>
<td>45 mrem</td>
<td>Average yearly dose from cosmic radiation received by people in the Paducah, Kentucky, area</td>
</tr>
<tr>
<td>46 mrem</td>
<td>Estimate of the largest dose any off-site person could have received from the March 28, 1979, Three Mile Island nuclear accident</td>
</tr>
<tr>
<td>66 mrem</td>
<td>Average yearly dose to people in the United States from human-made sources</td>
</tr>
<tr>
<td>100 mrem</td>
<td>Annual limit of dose from all Department of Energy (DOE) facilities to a member of the public who is not a radiation worker</td>
</tr>
<tr>
<td>110 mrem</td>
<td>Average occupational dose received by U.S. commercial radiation workers in 1980</td>
</tr>
<tr>
<td>244 mrem</td>
<td>Average dose from an upper gastrointestinal diagnostic X-ray series</td>
</tr>
<tr>
<td>300 mrem</td>
<td>Average yearly dose to people in the United States from all sources of natural background radiation</td>
</tr>
<tr>
<td>1 to 5 rem</td>
<td>Level at which EPA Protective Action Guidelines state that public officials should take emergency action when this is a probable dose to a member of the public from a nuclear accident</td>
</tr>
<tr>
<td>5 rem</td>
<td>Annual limit for occupational exposure of radiation workers set by the Nuclear Regulatory Commission and DOE</td>
</tr>
<tr>
<td>10 rem</td>
<td>Estimated level at which an acute dose would result in a lifetime excess risk of death from cancer of 0.8%</td>
</tr>
<tr>
<td>25 rem</td>
<td>EPA guideline for voluntary maximum dose to emergency workers for non-lifesaving work during an emergency</td>
</tr>
<tr>
<td>75 rem</td>
<td>EPA guideline for maximum dose to emergency workers volunteering for lifesaving work</td>
</tr>
<tr>
<td>50 to 600 rem</td>
<td>Level at which doses received over a short period of time produce radiation sickness in varying degrees. At the lower end of this range, people are expected to recover completely, given proper medical attention. At the top of this range, most people will die within 60 days</td>
</tr>
</tbody>
</table>

F.5.7 Dose from Cosmic Radiation

The average annual dose equivalent to people in the United States from cosmic radiation is about 27 mrem (0.27 mSv) (NCRP 1987). The average dose equivalent caused by cosmic radiation in Tennessee is about 45 mrem per year (0.45 mSv per year) (Tsakeres 1980). When shielding and the time spent indoors are considered, the dose for the surrounding population is reduced to 80%, or about 36 mrem (0.36 mSv) per year.

F.5.8 Dose from Terrestrial Radiation

The average annual dose from terrestrial gamma radiation is about 28 mrem (0.28 mSv) in the United States but varies geographically across the country (NCRP 1987). Typical reported values are about
16 mrem (0.16 mSv) on the Atlantic and Gulf coastal plains and about 63 mrem (0.63 mSv) on the eastern slopes of the Rocky Mountains.

F.5.9 Dose from Internal Radiation

The major contributors to the annual dose equivalent for internal radionuclides are the short-lived decay products of radon, which contribute an average dose of about 200 mrem (2.00 mSv) per year. This dose estimate is based on an average radon concentration of about 1 pCi/L (0.037 Bq/L) (NCRP 1987).

The average dose from other internal radionuclides is about 39 mrem (0.39 mSv) per year, which is predominantly attributed to the naturally occurring radioactive isotope of potassium, ^{40}K. The concentration of radioactive potassium in human tissues is similar in all parts of the world (NCRP 1987).

F.5.10 Dose from Consumer Products

The U.S. average annual dose to an individual from consumer products is about 10 mrem (0.10 mSv) (NCRP 1987); however, not all members of the U.S. population are exposed to all of these sources.

F.5.11 Dose from Medical Sources

Nuclear medicine examinations, which involve internal administration of radiopharmaceuticals, generally account for the largest portion of dose from human-made sources. However, the radionuclides used for specific tests are not distributed uniformly throughout the body. In these cases, the concept of EDE, which relates the significance of exposures of organs or body parts to the effect on the entire body, is useful in making comparisons. The average annual EDE from medical examinations is 53 mrem (0.53 mSv), including 39 mrem (0.39 mSv) for diagnostic X rays and 14 mrem (0.14 mSv) for nuclear medicine procedures (NCRP 1989). The actual doses to individuals who receive such medical exams are much higher than these values, but not everyone receives such exams each year (NCRP 1989).

F.5.12 Doses from Other Sources

A few additional sources of radiation contribute minor doses to individuals in the United States. The dose to the general public from nuclear fuel cycle facilities, such as uranium mines, mills, fuel-processing plants, nuclear power plants, and transportation routes, has been estimated at less than 1 mrem (0.01 mSv) per year (NCRP 1987).

Small doses to individuals occur as a result of radioactive fallout from atmospheric atomic bomb tests, emissions of radioactive materials from nuclear facilities, emissions from certain mineral extraction facilities, and transportation of radioactive materials. The combination of these sources contributes less than 1 mrem (0.01 mSv) per year to an individual’s average dose (NCRP 1987).

F.6 Water Pathway Dose Methodology

People can be exposed to radionuclides in the environment through a number of routes (Fig. F.2). Potential routes for internal and/or external exposure are referred to as exposure pathways. Several such pathways exist for exposures of humans to radionuclides in water. People may directly ingest (drink) the water. They may eat fish that were caught from the water and, thus, contain radionuclides taken in from the water. Also, people may swim in the water, may boat on the water, and may use shoreline that has absorbed radionuclides from the water. The following sections discuss the methodologies used to calculate potential radiological impacts to persons who drink water; eat fish; and swim, boat, and use the shoreline at various locations along the Clinch and Tennessee rivers. The results of these calculations are summarized in Sect. 7.1.2.2.

Radionuclides discharged to surface waters from the ORR enter the Tennessee River system by way of the Clinch River and various feeder streams (see Sect. 1.3.4 for the surface water setting of the ORR). Discharges from the Y-12 Complex enter the Clinch River via Bear Creek and East Fork Poplar Creek,
both of which enter Poplar Creek before it enters the Clinch River, and by discharges from Rogers Quarry into McCoy Branch and then into Melton Hill Lake. Discharges from ORNL enter the Clinch River via White Oak Creek and Melton Hill Lake via some small drainage creeks. Discharges from the ETTP enter the Clinch River either directly or via Poplar Creek. For convenience, and to correspond to water sampling locations, surface waters around and below the ORR are divided into seven segments (which we call water bodies):

- Melton Hill Lake above all possible ORR inputs,
- Melton Hill Lake,
- Upper Clinch River from Melton Hill Dam to confluence with Poplar Creek,
- Lower Clinch River (from confluence with Poplar Creek to confluence with the Tennessee River),
- Upper Watts Bar Lake (from around the confluence with the Clinch River to below Kingston),
- Lower System (remainder of Watts Bar Lake and Chickamauga Lake), and
- Poplar Creek, including the confluence of East Fork Poplar Creek.

Since East Fork Poplar Creek is posted against water use, dose estimates for such uses are not reported.

The LADTAP XL methodology (Hamby 1991) is used to calculate individual and population doses via waterborne exposure pathways. All dose calculations require definition of radionuclide concentrations in the medium of interest (water, fish, and shoreline) in the water body of interest.

Two methods, determined by the type of data used, are used to estimate potential radiation doses to the public. The first method uses radionuclide concentrations in the medium of interest (i.e., in water and fish) that were determined by laboratory analyses of actual water and fish samples (see Sects. 6.4 and 6.6). The second method estimates radionuclide concentrations in water and fish that were calculated from measured radionuclide discharges and known or estimated stream flows.

The advantage of the first method is the use of radionuclide concentrations actually measured in water and fish; disadvantages are the inclusion of naturally occurring radionuclides, especially in gross alpha- and beta-activity measurements, the possibility that some radionuclides of ORR origin might be present in quantities too low to be measured, and the possibility that the presence of some radionuclides might be misstated (e.g., present in a quantity below the detection limit). The advantages of the second method are that most radionuclides discharged from the ORR will be quantified and that naturally occurring radionuclides will not be considered or will be accounted for separately; the disadvantage is the lack of complete river, discharge, and stream flow data. Both methods use models to estimate the concentrations of the radionuclides in water and fish, except at locations (water bodies) where actual measurements are made. Using the two methods should allow the potential radiation doses to be bounded.

For some water bodies, radionuclide concentrations are measured directly. These concentrations are used to calculate concentrations in fish and shoreline, as described below. Concentrations in the water body downstream of the measured water body are obtained by multiplying the measured water body concentrations by the ratio of the measured water body flow (L/year) to the downstream water body flow (L/year); in essence, the concentrations in the upstream water body are diluted by any additional water input to the downstream water body. This dilution calculation continues for all other downstream water bodies.

For other water bodies, data are available on the activities of radionuclides discharged to a water body. These data may be in the form of (1) total activities discharged per year (Ci/year) or (2) activities per unit volume of water (Ci/L) plus the total volume of water discharged per year (L/year). Radionuclide concentrations in the receiving water body are calculated simply by dividing the measured discharge activities (Ci/year) by the total annual flow of the receiving water body (L/year). The process for calculating concentrations in downstream water bodies is the same as that described in the previous paragraph. The discharge flow rate is usually negligible with respect to the receiving water body flow rate.

Equations used to estimate water pathway doses from radionuclide concentrations in water are given in the following sections.
F.6.1 Drinking Water

Several water treatment plants along the Clinch and Tennessee River systems could be affected by discharges from the ORR. Since no in-plant radionuclide concentration data are available for any of these plants, all of the dose estimates given below likely are high because they are based on concentrations of radionuclides in water before it enters a processing plant. For purposes of assessment, it was assumed that maximally exposed individuals drink 730 L/year of water and that the average person drinks 370 L/year.

Table F.3 is a summary of potential EDs from identified waterborne radionuclides around the ORR and shows the variation in dose based on method used to estimate dose. The ED from ingestion of water is given by

\[D_{E,i,\text{drink}} = U_{\text{drink}} \times C_{w,i} \times DC_{i,\text{ing}} \times \exp(-\lambda_{r,i} \times t_{\text{drink}}), \]

where

- \(D_{E,i,\text{drink}} \) = ED due to drinking water containing nuclide \(i \) (mrem/year),
- \(U_{\text{drink}} \) = water consumption rate (L/year),
- \(C_{w,i} \) = concentration of nuclide \(i \) in water (\(\mu Ci/L \)),
- \(DC_{i,\text{ing}} \) = dose coefficient for ingestion of nuclide \(i \) (mrem/\(\mu Ci \)),
- \(\lambda_{r,i} \) = radioactive decay constant for nuclide \(i \) (I/d),
- \(t_{\text{drink}} \) = time between entry of nuclide into plant and consumption (assumed one day).

F.6.2 Eating Fish

Fishing is quite common on the Clinch and Tennessee River systems. For purposes of assessment, it was assumed that avid fish consumers eat 21 kg/year of fish and that the average person consumes 6.9 kg/year of fish. EDs were calculated from measured radionuclide contents in fish (see Sect. 7.6), measured concentrations of radionuclides in water, and calculated concentrations in water. The ED from consumption of fish containing nuclide \(i \) is given by

\[D_{E,i,\text{fish}} = U_{\text{fish}} \times C_{w,i} \times DC_{i,\text{ing}} \times B_{i,\text{fish}} \times \exp(-\lambda_{r,i} \times t_{\text{fish}}), \]

where

- \(D_{E,i,\text{fish}} \) = ED due to eating fish containing nuclide \(i \) (mrem/year),
- \(U_{\text{fish}} \) = fish consumption rate (kg/year),
- \(C_{w,i} \) = concentration of nuclide \(i \) in water (\(\mu Ci/L \)),
- \(DC_{i,\text{ing}} \) = dose coefficient for ingestion of nuclide \(i \) (mrem/\(\mu Ci \)),
- \(B_{i,\text{fish}} \) = bioaccumulation factor (L/kg),
- \(\lambda_{r,i} \) = radioactive decay constant for nuclide \(i \) (I/d),
- \(t_{\text{fish}} \) = time between harvest and consumption (assumed 10 days).

Fish samples are collected from Melton Hill Lake above all ORR inputs [Clinch River kilometer (CRK) 70], from the upper part of the Clinch River (CRK 32), and from the Clinch River below all ORR inputs (CRK 16). Unidentified beta and alpha activities are often detected in many of the fish samples. Excess beta and alpha activities are estimated by subtracting activities of identified beta- and alpha-particle-emitting radionuclides from the corresponding unidentified activities. The excess unidentified beta and alpha activities are assumed to be from the naturally occurring radionuclides \(^{234}\text{Th}\) and \(^{226}\text{Ra}\).
Table F.3. Summary of annual maximum individual effective dose equivalents from waterborne radionuclides (mrem)\(^a\)

<table>
<thead>
<tr>
<th>Type of sample</th>
<th>Drinking water</th>
<th>Eating fish</th>
<th>Other uses</th>
<th>Total of highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melton Hill Lake above ORR inputs, CRK 70 and 66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish(^b)</td>
<td>0.03</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Water(^c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>0.03</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Melton Hill Lake, CRK 58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water(^c)</td>
<td>0.0007</td>
<td>0.001</td>
<td>0.00005</td>
<td>0.002</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.0007</td>
<td>0.001</td>
<td>0.00005</td>
<td>0.002</td>
</tr>
<tr>
<td>Upper Clinch River, CRK 23, Gallaher Water Plant, CRK 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish(^b)</td>
<td>0.04</td>
<td></td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Water(^c)</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Discharge(^d)</td>
<td>0.02</td>
<td>0.06</td>
<td>0.009</td>
<td>0.09</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Lower Clinch River, CRK 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish(^b)</td>
<td>0.03</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Water(^c)</td>
<td>NA(^e)</td>
<td>0.08</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Discharge(^d)</td>
<td>NA(^e)</td>
<td>0.04</td>
<td>0.006</td>
<td>0.05</td>
</tr>
<tr>
<td>Maximum</td>
<td>NA(^e)</td>
<td>0.08</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Upper Watts Bar Lake, Kingston Municipal Water Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water(^c)</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>Discharge(^d)</td>
<td>0.006</td>
<td>0.01</td>
<td>0.003</td>
<td>0.02</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>Lower System (Lower Watts Bar Lake and Chickamauga Lake)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water(^c)</td>
<td>0.04</td>
<td>0.03</td>
<td>0.005</td>
<td>0.07</td>
</tr>
<tr>
<td>Discharge(^d)</td>
<td>0.006</td>
<td>0.01</td>
<td>0.003</td>
<td>0.02</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.04</td>
<td>0.03</td>
<td>0.005</td>
<td>0.07</td>
</tr>
<tr>
<td>Poplar Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water(^c)</td>
<td>NA(^e)</td>
<td>0.4</td>
<td>0.006</td>
<td>0.4</td>
</tr>
<tr>
<td>Discharge(^d)</td>
<td>NA(^e)</td>
<td>0.04</td>
<td>0.001</td>
<td>0.04</td>
</tr>
<tr>
<td>Maximum</td>
<td>NA(^e)</td>
<td>0.4</td>
<td>0.006</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\(^a\) 1 mrem = 0.01 mSv.
\(^b\) Doses based on measured radionuclide concentrations in fish tissue.
\(^c\) Doses based on measured radionuclide concentrations in water.
\(^d\) Doses based on measured discharges of radionuclides from on-site outfalls.
\(^e\) Not at drinking water supply locations.

F.6.3 Other Uses

Other uses of the ORR area waterways include swimming or wading, boating, and use of the shoreline. A highly exposed other user was assumed to swim or wade for 30 h/year, boat for 63 h/year, and use the shoreline for 60 h/year. Measured and calculated concentrations of radionuclides in water and the LADTAP XL methodology were used to estimate potential EDs from these activities.
The ED from swimming in water containing nuclide \(i \) (except tritium) is given by

\[
D_{E,i,swim} = 0.142 \cdot C_{w,i} \cdot U_{swim} \cdot D_{C,i,WS},
\]

where

- \(D_{E,i,swim} \) = ED from swimming in water containing nuclide \(i \) (mrem/year),
- 0.142 = unit conversion factor (1,000 L/m\(^3\) divided by 8,760 h/year),
- \(U_{swim} \) = time spent swimming (h/year),
- \(C_{w,i} \) = concentration of nuclide \(i \) in water (\(\mu \text{Ci/L} \)),
- \(D_{C,i,WS} \) = dose conversion factor for submersion in water containing nuclide \(i \) (mrem-m\(^3\)/year-\(\mu \text{Ci} \)).

Complete submersion is assumed while swimming. For tritium, the swimming dose equation is

\[
D_{E,T,swim} = C_{W,T} \cdot U_{swim} \cdot I_T \cdot D_{C,T,ing},
\]

where

- \(D_{E,T,swim} \) = ED from swimming in water containing tritium (mrem/year),
- \(U_{swim} \) = time spent swimming (h/year),
- \(C_{W,T} \) = concentration of tritium in water (\(\mu \text{Ci/L} \)),
- \(I_T \) = absorption factor for tritium via whole body immersion in water (= 0.035 L/h),
- \(D_{C,T,ing} \) = dose coefficient for ingestion of tritium (mrem/\(\mu \text{Ci} \)).

The ED from boating on water containing nuclide \(i \) (except tritium) is given by

\[
D_{E,i,boat} = 0.5 \cdot (0.142 \cdot C_{w,i} \cdot U_{boat} \cdot D_{C,i,WS}),
\]

where

- \(D_{E,i,boat} \) = ED from boating on water containing nuclide \(i \) (mrem/year),
- 0.5 = correction factor,
- 0.142 = unit conversion factor (1,000 L/m\(^3\) divided by 8,760 h/year),
- \(U_{boat} \) = time spent boating (h/year),
- \(C_{w,i} \) = concentration of nuclide \(i \) in water (\(\mu \text{Ci/L} \)),
- \(D_{C,i,WS} \) = dose coefficient for submersion in water containing nuclide \(i \) [mrem-m\(^3\)/year-\(\mu \text{Ci} \)].

The 0.5 correction factor arises from the assumption used in LADTAP XL that doses per unit from boating equal one-half the doses from swimming. Any shielding by the boat’s hull is ignored. The dose attributable to any tritium, which emits only very weak beta radiation, in the water is assumed to be 0.

The ED from using a shoreline containing nuclide \(i \) is given by

\[
D_{E,i,shore} = C_{i,shore} \cdot U_{shore} \cdot (G_{shore} / 8760) \cdot D_{C,i,soil},
\]

where

- \(D_{E,i,shore} \) = ED from using a shoreline containing nuclide \(i \) (mrem/year),
- \(C_{i,shore} \) = concentration of nuclide \(i \) on shoreline (\(\mu \text{Ci/m}^2 \)),
- \(U_{shore} \) = time spent using shoreline (h/year),
- \(G_{shore} \) = ground cover factor for shoreline.

\(D_{C,i,soil} \) = dose coefficient for submersion in soil containing nuclide \(i \) [mrem-m\(^3\)/year-\(\mu \text{Ci} \)].
where \(D_{E,i,shore}\) = ED due to use of shoreline containing nuclide \(i\) (mrem/year),
\(C_{i,shore}\) = annual average concentration of nuclide \(i\) in shoreline soil (\(\mu\)Ci/m²),
\(U_{shore}\) = duration of time spent on the shoreline (h/year),
\(G_{shore}\) = unitless shoreline width correction factor (0.2 for rivers),
8760 = number of hours in a year (h/year), and
\(DC_{i,soil}\) = dose conversion factor for infinitely thick soil containing nuclide (mrem-m²/\(\mu\)Ci-year).

The annual average concentration of nuclide \(i\) in shoreline soil is obtained by

\[C_{i,shore} = C_{W,i} \cdot F_{i,W-S} \cdot T_{1/2,i} \cdot (1 - \text{EXP}[-\lambda_{r,i} \cdot 365 \cdot t_{S-W}])\]

\(C_{W,i}\) = annual average concentration of nuclide \(i\) in water (\(\mu\)Ci/L),
\(F_{i,W-S}\) = water-to-sediment transfer coefficient nuclide \(i\) (= 100 L/m²-day),
\(T_{1/2,i}\) = radioactive half-life of nuclide \(i\) (d),
\(\lambda_{r,i}\) = radioactive decay constant for nuclide \(i\) (1/d),
\(t_{S-W}\) = time over which shoreline soil is exposed to water containing nuclide \(i\)
(= 50 years), and
365 = number of days in a year (d/year).

It is assumed that the buildup and decay of nuclides in shoreline soil has occurred at the current year’s rates for the past 50 years.

When compared with EDs from drinking water and eating fish from the same waters, the EDs from these other uses are relatively small. Table F.3 is a summary of potential EDs from identified waterborne radionuclides around the ORR and shows the variation in dose based on method used to estimate dose.