DOE-13-0359



I-02033-0107

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DOE OVERSIGHT DIVISION 761 EMORY VALLEY ROAD OAK RIDGE, TENNESSEE 37830-7072

September 9, 2013

Mr. John Michael Japp Federal Facility Agreement Manager U.S. Department of Energy Oak Ridge Operations Office P.O. Box 2001 Oak Ridge, TN 37831

Dear Mr. Japp

## Re: Remedial Investigation/Feasibility Study for Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, TN DOE/OR/01-2535&D2 June 2013

The Tennessee Department of Environment and Conservation (TDEC) previously notified the Department of Energy (DOE) in a letter dated July 15, 2013 that the DOE Response to TDEC comments required more discussion and TDEC placed the Remedial Investigation and Feasibility Study and Response to Comments for Environmental Management Disposal Facility (EMDF) in informal dispute. TDEC's response to DOE's Response to Comments is attached.

Subsequent to initiating informal dispute, DOE hosted a workshop on the Environmental Management Waste Management Facility (EMWMF) and the EMDF. That workshop brought together a number of experts and provided a good overview of the facilities. From those discussions there are several topics that need highlighting:

1. It is common practice to perform a hydrogeologic evaluation prior to siting a waste management facility to verify the site meets siting criteria and as part of assessing alternative sites. This was not done and the schedule proposes selecting the site and then performing a hydrogeologic evaluation. This is backwards. There are ongoing questions with groundwater levels and potential implications on EMWMF and EMDF is in a similar area with potentially similar groundwater issues. This landfill is proposed for placement of radioisotopes, mercury, and other constituents that will be present through geologic time. Landfill stability is of paramount importance and it is preferable to not rely on engineering controls as it is reasonable to assume engineering controls will fail over geologic time.

SEP 2 3 2013 L DOEIC

RECEIVED SEP 1 7 2013

32

およう キーファー しゅうう

- 2. The siting of EMDF was apparently based on siting of EMWMF. With questions as to the hydrogeologic environment, reevaluating siting EMDF in the proposed location is needed.
- 3. DOE presented a discussion at the workshop that DOE is running out of time to site, design, and construct EMDF before EMWMF is at capacity. EMWMF is being filled with an estimated 30 to 50 percent clean material. DOE should begin volume reduction, waste segregation, and size reduction <u>now</u> to reduce amount of material and space needed in EMWMF thereby extending life of EMWMF to allow time for better evaluation of potential EMDF sites.
- 4. EMDF previously included building a treatment plant to treat contact water and leachate. Response to Comments on the Remedial Investigation/Feasibility Study removed the treatment plant and specified ARARS that did not include all designated uses. The response to comments also specified EMDF would treat leachate and contact water in the same manner as at EMWMF. At the workshop, handling of leachate and contact water was discussed. It is TDEC's understanding that:
  - a. DOE will continue to treat leachate.
  - b. If DOE develops a plan and schedule acceptable to TDEC to address contact water, then TDEC will work with DOE to implement the plan. Without an acceptable plan, TDEC will expect DOE treat Contact Water. Timing for developing the plan was not discussed and should be discussed in the informal dispute.
  - c. TDEC will expect DOE radiological waste control, treatment and discharge requirements for contact water to be equivalent to the Division of Radiological Health regulations.
  - d. If DOE constructs another waste disposal facility in Bear Creek, it should include a water treatment plant to treat leachate and contact water, piping leachate and contact water to a treatment facility or other action so there will be not direct discharge of either leachate or contact water. (A rigorous feasibility study should be performed and a remedy may be implemented prior to construction of a new waste disposal facility as part of the plan referenced above.)
  - e. Water management on existing EMWMF is a problem for the operators and practical items should be implemented to better manage water to reduce the volume of contact water.

Mr. John Michael Japp Page 3 September 9, 2013

Questions or comments concerning the contents of this letter should be directed to me at the above address or by phone at (865) 481-0995.

Sincerely

Mr Re

Roger Petrie, FFA Project Manager Environmental Restoration Program



er999373

## CERCLA D1 RI/FS COMMENT AND RESPONSE SUMMARY

| Comments by:              | TDEC Division of DOE Oversight                                                                                                                                                  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Comments Received:</b> | February 19, 2013                                                                                                                                                               |
| Title of Document:        | Remedial Investigation/Feasibility Study for Comprehensive Environmental Response, Compensation, and Liability Act<br>Oak Ridge Reservation Waste Disposal Oak Ridge, Tennessee |
| <b>Revision No.:</b>      | DI                                                                                                                                                                              |
| Document No:              | DOE/OR/01-2535&D1                                                                                                                                                               |
| Date:                     | September 2012                                                                                                                                                                  |

| No.        | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TDEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOE Response Approach/Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TDEC Approye/Rebuttal                                                                                                                                                                                                                                                                                             |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) General | The approach to development of a preliminary<br>WAC taken in this document does not address<br>cumulative effects due to the EMWMF and the<br>proposed EMDF, as required by DOE M 435.1-1<br>(Radioactive Waste Management Manual).<br>TDEC has concerns as to whether the proposed<br>approach is adequate for WAC development or to<br>assure future compliance with the performance<br>objectives required by DOE Order 435.1 and TN<br>Rule 0400-20-1116. Below are listed concerns<br>TDEC has with the risk based modeling employed<br>in this document. | DOE Order 435.1 Chg 1 requirements are To<br>Be Considered materials subject to review and<br>approval by the DOE Low-Level Waste<br>Disposal Facility Federal Review Group<br>(LFRG). A Performance Assessment and<br>Composite Analysis will be prepared under<br>separate cover and submitted to LFRG at a<br>later date. The PA, CA and a PA/CA<br>Maintenance Plan are among the requirements<br>for LFRG to approve a Disposal Authorization<br>Statement pursuant to 0435.1. A brief<br>explanation of the mission and purpose of<br>LFRG has been added to RI/FS Section<br>7.2.2.6. A more formal definition of To Be<br>Considered materials has been added to<br>Section 1 of Appendix E. | NUREG guidance should be used for<br>establishing performance under TN Rule 0400-<br>20-1116. Compliance with DOE Order 435.1<br>does not assure performance under state<br>statutes.<br>The composite analysis, LFRG and state<br>review are required before this approval. This<br>is necessary to assure that EMDF performance<br>parameters are properly developed and<br>supported. The state can only approve EMDF<br>once the cumulative impacts of relevant<br>sources in Bear Creek Valley are understood.                                                                       |                                                                                                                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a. Sites on the ORR underlain by carbonate<br>rocks fail a key technical requirement for<br>siting facilities for land disposal of<br>radioactive waste in Tennessee [TN Rule<br>0400-20-1117 (1) (b)]. Consequently, sites<br>on the ORR underlain by carbonate rocks<br>should not be candidate sites for CERCLA<br>land disposal of radioactive wastes.                                                                                                                                                                                                                                                                                                                                           | The commenter's reference to carbonate is<br>apparently meant to imply that delineation of<br>flow paths in karst terrain is usually not<br>possible. The EMDF site is not underlain by<br>the pure carbonate rocks in which karst is best<br>formed. There is no evidence of karst at the<br>site or at similarly positioned sites in Bear<br>Creek Valley, e.g., EMWMF. The EMDF site<br>is expected to be fully capable of being<br>characterized, modeled, analyzed, and<br>monitored. Text stating that the site can<br>meet the TDEC criteria has been added to<br>Section 7.2.2.6. | Models cannot be adequately assessed prior to<br>site characterization. TDEC agrees that the<br>EMDF site is expected to be fully capable of<br>being characterized, modeled, and analyzed, but<br>this site must pass this key technical<br>requirement for siting facilities prior to approval<br>of the RI/FS. |

| <ul> <li>b. Risk modeling is ultimately based on the inventory of contaminant mass or Curies disposed. Using a volume weighted sum of fractions rather than a limit on total mass or curie content (or a mass/Curie weighted SOF) adds an extra and unnecessary step between the calculation of risk and waste acceptance. A less complex and more transparent WAC attainment process than that currently used at the EMWMF would be a goal for any new ORR CERCLA disposal facility, although impacts to the conclusions of this RI/FS might not be significant.</li> </ul> | The SOF method used in meeting final WAC is<br>beyond the scope of this RI/FS. The final<br>methodology for WAC attainment will be<br>developed and submitted for regulator and<br>LFRG approval at a later date. WAC approval<br>by LFRG is a required element for obtaining a<br>Disposal Authorization Statement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The costs and benefits of on-site waste disposal<br>cannot be assessed without agreement on<br>preliminary waste acceptance criteria. WAC<br>must be adequate to assure long-term<br>performance under both DOE Orders and TDEC<br>rules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| c. The list of waste types proposed for the<br>EMDF (section 2.1.2 of the RI/FS) includes a<br>range of demolition material, but it is not<br>apparent that this has been reflected in the<br>choice of solid-liquid partition coefficients<br>used in modeling.                                                                                                                                                                                                                                                                                                             | Please see Appendix F, Section 5.1, $3^{rd}$<br>paragraph for more detail on the reasons that $K_d$ for soil-like materials are considered<br>appropriate. This paragraph has been revised to<br>improve clarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The soil-like material wastes in the EMWMF<br>do not support the assumptions listed in Section<br>5.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d. The cell design, waste forms, hydrologic setting, and operations proposed for the EMDF is not sufficient to assure that a 1 centimeter per year infiltration rate through the cell represents a plausible worst case.                                                                                                                                                                                                                                                                                                                                                     | This comment lacks specificity, but can be<br>addressed by stating that the design contained<br>within the RI/FS is conceptual. Infiltration rates<br>of 1 cm/yr [i.e., 0.38 in/yr (Partially Functional<br>Stage) and 0.42 in/yr (Long- Term performance<br>Stage)] were calculated by the Hydrologic<br>Evaluation of Landfill Performance (HELP) model<br>using input parameters based on the conceptual<br>landfill design (please see Table F-2 in<br>Appendix F). This approach is conservative<br>because it assumes partial and then total failure<br>of synthetic liners and drainage diversion layers,<br>relying instead on the long-term stability of the<br>compacted clay layers to limit infiltration. No<br>revisions have been made to the RI/FS with<br>regard to this comment. | It is not possible to verify that the assumptions<br>and input parameters used in HELP modeling are<br>conservative. An infiltration rate of 1 cm/yr<br>without benefit of a geomembrane is very low.<br>Differential settling will result in perching of<br>water on this interface, increasing infiltration<br>through the barrier layer and likely causing some<br>deterioration of the barrier layer due to shrink<br>and swell in areas where perched water changes<br>saturation levels significantly. The "worst case<br>scenarios" do not include leachate outbreaks on<br>side slopes. This seems possible in the EMWMF<br>design due to perching or bathtubbing of leachate<br>in wastes with significant voids placed on<br>relatively impermeable wastes. The scenarios do<br>not include effects of ground water intrusion into<br>the clay liner despite the artesian conditions that<br>exist. The cell design, waste forms, hydrologic<br>setting, and operations proposed for the EMDF<br>are similar to those at the EMWMF, and the<br>modeling presented in this document would not<br>assure that a 1 centimeter per year infiltration<br>rate through the cell represents a plausible worst<br>case. |

\*1

|    |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----|---------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |         | с.                               | There is little rationale provided for the scenarios used to establish long-term performance of the proposed facility. Other than a proposed three foot thick layer of 4 inch to 12 inch diameter rip-rap in the final cap design, there is nothing to address the performance objective limiting the risk to inadvertent intruders in TN Rule 0400-20-1116 (3), or satisfy the similar requirement in Chapter IV, paragraph (P) (2) (h) of DOE M 435.1. The RI should evaluate long term facility performance in accordance with TN Rule 0400-20-1116 and DOE Orders, or should provide sufficient justification to demonstrate an equivalent standard of performance under the requirements for formal waiver of ARARS, given in 40 CFR 300.430 (f)(1)(ii)(c)(4). | The biointrusion layer and the cap thickness<br>work to discourage inadvertent intrusion, such<br>as construction of a house basement or drilling<br>a water well. Further, the steep side slopes will<br>discourage construction. Penetration of the<br>cap's layers, especially the biointrusion layer,<br>would require heavy equipment and would<br>therefore be intentional intrusion. Analyses of<br>acute- and chronic-exposure inadvertent<br>human intruder scenarios will be contained in<br>the Performance Assessment (PA) required by<br>O 435.1. The intruder analyses are expected<br>to conform to Manual 435.1, Chapter IV<br>requirements. Additional protective measures<br>could be incorporated into the final design<br>should the PA indicate the need for additional<br>measure to protect from inadvertent intrusion.<br>Revisions have been made to RI/FS<br>Section7.2.2.3 to clarify the expectations<br>regarding inadvertent intrusion. | The scenarios here ignores the possibility of<br>long-term geotechnical problems that might<br>lead to liner or side slope failures, as well as a<br>potential bathtub effect and leachate outbreaks<br>on side slopes.                                                                                                                                                                                                                                                                                                    |
|    |         | £                                | It also appears that the placement of the well<br>(pages F- 5 to F-9 of the RI/FS) to establish<br>risks through groundwater pathways does not<br>achieve the stated goal of determining a point<br>of compliance at the point of highest<br>projected dose or concentration beyond a 100<br>meter buffer zone surrounding the disposed<br>waste, per DOE M 435.1 (P) (2) (b). In order<br>to be consistent with both DOE requirements<br>the withdrawal well should not be far outside<br>the 100 meter buffer. A sensitivity analysis<br>should be performed to show that the dilution<br>factor achieved by the hypothetical location<br>and construction of a withdrawal well is at<br>least typical of worst case scenarios.                                   | The location of the hypothetical receptor well for<br>modeling purposes<br>was analogous to the approach approved for<br>EMWMF by the regulators. This location was<br>used to calculate the preliminary WAC, based<br>on the assumption that this is the nearest<br>reasonable location for a resident farmer with a<br>well, watering livestock and crops from Bear<br>Creek. It is not intended to comply with O<br>435.1 Performance Assessment requirements,<br>which will be addressed in a Performance<br>Assessment and Composite Analysis to be<br>prepared at a later date. No revisions have been<br>made.                                                                                                                                                                                                                                                                                                                                                 | Design and input parameters for EMWMF are not<br>a precedent for EMDF. The hypothetical receptor<br>must be put in the most conservative location.<br>Any preferential contaminant pathways, either<br>natural or constructed, must be considered in<br>placing the hypothetical receptor. The transport<br>footprints of EMWMF and EMDF will overlap<br>and should be included in a composite analysis<br>per O 435.1 Performance Assessment and<br>Composite Analysis. This is a requirement prior<br>to state approval. |
| 2) | General | fed<br>Ap<br>list<br>siti<br>pro | nore thorough consideration of all state and<br>leral laws and regulations than that given in<br>pendix E will be required before establishing a<br>of ARARs. Some specific examples relative to<br>ng, design, and operations requirements for the<br>oposed facility considered by TDEC to be most<br>nificant are discussed below:                                                                                                                                                                                                                                                                                                                                                                                                                               | Development of ARARs is an iterative<br>process; and includes incorporation of<br>some regulator comments. The ARARs<br>list will continue to evolve as the<br>remedial design is completed. Additional<br>responses to this multi-part comment are<br>provided below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All state laws are ARARs unless they are<br>waived via written permission.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

ŧ

| a. The discussion in Chapter 3 of Appendix E<br>(pages E-3 and E-4) of this document is not<br>adequate to provide a basis for the waiver of<br>ARARs, specifically TSCA requirement 40<br>CFR 761.75(b) (3) or TDEC Rule 1200-2-11-<br>.17(1)(h) (now TN 400-20 1117(1)(h)). The<br>intent of both of these rules is the long term<br>hydrologic isolation of the disposal facility<br>liner from the water table. | 40 CFR 761.75(b)(3) requirements will be met,<br>except for the 50 ft<br>buffer requirement between the liner and the<br>historic high water table. A waiver is requested<br>for this requirement on the basis that the landfill<br>liner design provides equivalent protection.<br>Citations to 40 CFR 300.430 (f)(ii)(B)(1) and<br>(C)(4) have been added to Sections 1 and 3 of<br>Appendix E, and additional rationale for the<br>waiver has been added to Section 3.                                                                                                                                             | Waiver of TDEC Rule 0400-2-1117(1)(h) will<br>require written authorization of the TDEC<br>Division of Solid Waste Management Relocation<br>of stream channel will also require fulfillment of<br>the substantive requirements of TDEC Rule<br>1200-4-7 (Aquatic Resource Alteration Permits) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                     | TDEC Rule 0400-2-1117(1)(h) would also<br>require a waiver. This waiver would be<br>requested based on the use of an underdrain and<br>packed soil base under the landfill liner to lower<br>the water table sufficient to prevent any springs<br>or seeps to the landfill floor after cell<br>construction is complete. The underdrain<br>system would eliminate the discharge of<br>groundwater to the ground surface. This waiver<br>is requested on the grounds of equivalent<br>protection, per 40 CFR 300.430 (f)(ii)(B)(1) and<br>(C)(4).<br>Additional discussion is presented in Section 3<br>of Appendix E. |                                                                                                                                                                                                                                                                                               |

----

|  | b. Perimeter drains and stormwater diversion<br>channels are required to hydrologically isolate<br>the proposed facility from surface water<br>discharge and ground water recharge along Pine<br>Ridge. There is no evaluation of the potential<br>for these constructed features to fail after the<br>closure of the facility. A record of surface water<br>discharge and hydraulic head and water table<br>fluctuations at the proposed site should be done<br>to demonstrate long term performance and<br>compliance with ARARs listed on pages E-38<br>and E-39 of the RI/FS (now TN Rule 0400- 02-<br>1117, subparagraphs (e), (f), (g), and (i), as<br>well as the monitoring requirements of TN Rule<br>TN Rule 0400- 02-1117, paragraph (4). | <ol> <li>The text in Section 6.2.2.4 of the RI/FS has<br/>been modified to indicate a design requirement<br/>will be to evaluate the possibility that the<br/>upgradient shallow French drain, storm water<br/>diversion ditches, and/or underdrain fail after<br/>closure of the disposal facility and demonstrate<br/>the landfill remains protective of the<br/>environment in the event one or more of these<br/>engineered features are no longer functional.</li> <li>An extensive site characterization study is<br/>currently in the planning process and is<br/>expected to begin in FY2014.</li> <li>Characterization is expected to involve<br/>continuous ground water level monitoring in<br/>multiple wells for one year, continuous<br/>surface water flow monitoring in NT-2 and<br/>NT-3 for one year, quarterly water quality<br/>monitoring and geological and geotechnical<br/>testing of soils and bedrock. The results of<br/>this study will be used in performance<br/>assessment and as a basis for landfill designs.<br/>A surface water and groundwater monitoring<br/>program will be instituted during operation<br/>and after closure of the landfill to<br/>demonstrate long-term performance and<br/>compliance with ARARs, in accordance with<br/>TDEC Rule 0400-20-1117(4)(a).</li> </ol> | This response is not adequate. The site must be<br>characterized prior to TDEC's approval of the<br>RI/FS. |
|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|

٠

| c. TN Rule 0400-02-1117, subparagraph<br>(2)(d). These requirements should be met<br>through proper cap design and void space<br>reduction measures.                                                                                                                                                                                                            | Text was added to Section 6.2.2.4 of the RI/FS<br>stating the landfill cap would be designed to<br>meet the requirements of TN Rule 0400-20-11-<br>.17, subparagraph (2)(d): "Covers must be<br>designed to minimize to the extent practicable<br>water infiltration, to direct percolating or<br>surface water away from the disposed waste and<br>to resist degradation by surface geologic<br>processes and biotic activity" (Note this TDEC<br>Rule is listed in the ARARs table in Appendix<br>E.)<br>The following wording was added to Section<br>6.2.5: "A goal of the waste placement and<br>compaction operations will be to minimize the<br>void space within the waste, which will lessen<br>the potential for long-term<br>settlement/subsidence of the waste and enhance<br>the long-term stability of the final cover<br>system."                                                                                                                                                                                                                                                                                      | TDEC expects DOE to commit to doing an<br>assessment and estimation of potential for void<br>formation and cap analysis to verify that voids<br>will not compromise the cap prior to approval of<br>the RI/FS. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d. TN Rule 0400-02-1117, subparagraph (2)(f).<br>The requirements would not allow for the<br>current proposal of a low permeability<br>protective layer (modeled in the RI/FS as 1 foot<br>of native soils – hydraulic conductivity of<br>approximately 10 <sup>-6</sup> cm/s on page F-18) above<br>the cell drainage layer and leachate collection<br>system. | TN Rule 0400-02-1117, subparagraph (2)(f)<br>states: "The disposal site must be designed to<br>minimize to the extent practicable the contact<br>of water with waste during storage, the<br>contact of standing water with waste during<br>disposal and the contact of percolating or<br>standing water with wastes after disposal."<br>The use of the protective soil layer, as<br>described in this RI/FS, does not violate the<br>requirements of TN Rule 0400-02-1117<br>stated above. Similar to the process being<br>performed at EMWMF, contact water would<br>be collected in the lower portion of the landfill<br>cell away from the waste. Temporary berms<br>would be constructed to contain the contact<br>water and separate it from the waste. Contact<br>water would be removed promptly from the<br>landfill cell after collection to prevent it from<br>standing within the waste during and after<br>disposal. Thus, to the extent practicable the<br>contact of standing water with waste during<br>disposal, and the contact of percolating or<br>standing water with waste after disposal<br>would be minimized. | Waiver of TDEC Rule 0400-2-1117(1)(h)<br>will require written authorization of the TDEC<br>Division of Solid Waste Management                                                                                  |

|    |         | e. Wastewater treatment is described in section<br>6.2.2.7 of the RI/FS. ARARs specific to<br>treatment and discharge of leachate and<br>contaminated storm water cited in this<br>document are listed on pages E-40 and E-60 of<br>the document. Subpart A of 40 CFR 445 for<br>point source discharges of wastewater from<br>landfills subject to the provisions of 40 CFR<br>part 264, Standards for Owners and Operators<br>of Hazardous Waste Treatment, Storage, and<br>Disposal Facilities, Subpart N-(Landfills) is<br>applicable to wastewater discharges from the<br>proposed facility. TN Rule 1200-04-0504 (1)<br>(b), which prohibits the discharge of<br>radioactive waste into waters, should be<br>considered relevant and appropriate. | Leachate treatment has been removed from the<br>RI/FS. Contact water and leachate will be<br>handled in the same manner as for EMWMF. | Recreational water quality criteria are ARARs<br>because Bear Creek is classified for recreational<br>use as per TDEC Rule 1200-04-04. The state has<br>not agreed to the same alterations to standard<br>operating procedures and design (i.e. low<br>permeability protective layer) that caused the<br>creation of contact water. Assumptions regarding<br>generation of contact water and leachate will be<br>evaluated with regards to appropriate state laws<br>and regulations. |
|----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3) | General | DOE concluded in 2004 (BJC/OR-1908) that the<br>expenditure of 7 to 10 million dollars on volume<br>reduction technologies would save 60,000 to<br>90,000 cubic yards of landfill capacity under the<br>assumption that void space reduction of wastes<br>generated from scrapyards and large buildings<br>would translate directly into 1:1 clean fill savings<br>requirements. Experience has shown that clean fill<br>savings are likely to be much more significant,<br>since ratios of over 2 to 1 clean fill:waste are<br>required to get proper compaction for a variety of<br>waste materials. The following comments concern<br>the use of volume reduction techniques.                                                                        | See responses below:                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|  | a. Appendix B seems to demonstrate the cost effectiveness of volume reduction methods. There are, however, inconsistencies in discussion of unit cost. In comparing disposal costs for on-site and off-site options, cost per unit volume of on-site disposal was made with a basis that includes clean fill in the total disposed volume. The feasibility of processing equipment, structural steel, piping, and other items requiring a high clean fill to void ratio for off-site disposal while disposing of materials not as suitable for volume reduction such as soil or concrete on-site should be evaluated. | Table B-9 provides a comparison of unit costs<br>for on-site and off-site disposal both with and<br>without volume reduction. The cost for on-site<br>disposal has to be based on the amount of air<br>space occupied by the waste material along<br>with the required quantity of clean feel required<br>for the particular material. The cost of the<br>landfill air space was divided by the as-<br>generated volume of the material to obtain<br>\$/As-G vol, which is the same basis as the cost<br>for off-site disposal. As shown in Table B-9,<br>the cost of off-site disposal for equipment and<br>structural steel, even with VR, is far greater<br>than the cost of on-site disposal for<br>equipment and on-site disposal for soil will<br>always be more expensive than disposing of all<br>the materials on-site. | The state does not disagree with the cost<br>comparison provided in Table B-9. It is noted<br>that Appendix B shows under scenario B, the<br>cost of aggressive volume reduction does result<br>in a cost savings of over \$65M and more<br>importantly a volume savings of over \$30,000<br>cubic yards. Maximizing waste segregation to<br>allow clean material to be disposed in existing<br>onsite landfills will increase the volume of high<br>activity waste that requires off-site disposal.<br>Minimizing the need for clean fill will further<br>reduce the disposal capacity needed to complete<br>the cleanup of the Oak Ridge Reservation. All of<br>this will reduce the area needing characterization<br>for the facility, the area impacted by the facility,<br>and possibly whether there is a need to cross a<br>stream to construct the facility.<br>In addition, in a letter from DOE to the SSAB<br>(July 19, 02013), "RESPONSE TO YOUR<br>LETTER DATED MAY 09, 2013,<br>RECOMMENDATION 215:<br>RECOMMENDATION 215:<br>RECOMMENDATION NREMAINING<br>LEGACY MATERIALS ON THE OAK RIDGE<br>RESERVATION" DOE states<br>"OREM has established a hierarchy for<br>dispositioning the inventory to minimize<br>disposition costs that includes:<br>• Reuse or recycle of waste or material<br>• Use of onsite Subtitle D landfills for final<br>disposal<br>• Use of offsite disposal facilities"<br>This hierarchy is also suitable for minimizing<br>dilution of radiological waste in general and<br>associated costs. This hierarchy would reduce<br>radiological waste volume and the need for<br>oversized capacity in EMDF. |
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|    |                                                    | b. The conceptual design, and presumably,<br>operational costs, of wastewater treatment are<br>based on the assumption that the<br>characteristics of leachate and contaminated<br>stormwater will be similar to the<br>characteristics of wastewater currently<br>generated at the EMWMF. The projected<br>waste stream for EMDF disposal is, however,<br>to be generated from somewhat different<br>sources than waste disposed at EMWMF, and<br>may contain contaminants that will be more<br>expensive to treat to water quality standards.<br>Water handling and wastewater treatment<br>options for the proposed facility should be<br>described in greater detail, including costs<br>associated with possible wastewater treatment<br>at the ORNL process waste treatment plant.                                                                                                                                                                                                                   | The treatment facility has been removed from<br>the estimate, however the ORNL PWTC uses a<br>very robust system that can accommodate a<br>wide variety of contaminants. All costs for<br>handling leachate and contact water are<br>included in the estimated annual operating cost,<br>which is taken directly from the actual<br>EMWMF operating costs (includes their<br>management of leachate and contact water).                                                                                                         | DOE must incorporate any additional ORNL<br>PWTC costs required for treating mercury in the<br>leachate and contact water into the RI/FS.                                    |
|----|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) | Executive<br>Summary,<br>Page ES-2,<br>Paragraph 3 | "RI/FS Approach"<br>Risk assessments on individual remedial sites may<br>not be in the scope of this document, but a risk<br>assessment of this new proposed disposal facility on<br>the EMWMF receptor is required. Our preliminary<br>evaluation indicates that the dose from the new<br>facility close to the EMWMF receptor would be<br>cumulative and could approximately double the<br>dose with the same waste acceptance criteria. This<br>situation requires a composite analysis of the two<br>disposal facilities on the EMWMF receptor.<br>Furthermore, a composite analysis should also<br>incrementally include other sources in Bear Creek<br>Valley, such as S3 ponds, Bear Creek Burial<br>Ground, Bone Yard Burn Yard and so forth, even to<br>consider the Spallation Neutron Source groundwater<br>pathway into spring SS5. It could be that this<br>proposed facility only reduces totaled risk if other<br>sources in Bear Creek Valley are removed,<br>remediated, or consolidated. | results were then used to calculate waste<br>acceptance criteria for specific constituents<br>expected to be present in the waste placed in the<br>EMDF only. A Composite Analysis (CA) will<br>be prepared to meet the requirements of DOE<br>Order 435.1, which includes consideration of<br>the cumulative impacts of all low-level<br>radioactive and chemical waste disposal areas<br>in EBCV. The CA, reviewed and approved by<br>LFRG (see response to comment 1, above), is<br>an element of the Disposal Authorization | A Composite Analysis is a prerequisite for<br>deciding and siting a new waste management<br>facility that can incrementally contribute risk to<br>on and off site receptors. |

| 2) | Executive<br>Summary,<br>Page ES-5,<br>Top of Page | Waste Control Specialists (WCS) should be<br>included in this discussion or explained why they<br>are not available. Especially since DOE has<br>anticipated capability at the site that may be<br>beneficial. WCS also has rail access. In general,<br>the discussion should include more sorting<br>alternatives for the purpose of disposing non-rad<br>waste in RCRA permitted facilities. "Cradle to<br>cradle" reuse/recycling of metal and other valuable<br>material should also be discussed up front. Please<br>state current and anticipated contract rates for each<br>commercial facility. The discussion, as is, seems<br>to have unsubstantiated cost estimates. | WCS is addressed in some detail as a process<br>modification in Section<br>6.3.3.8.1, but is not included in the Executive<br>Summary since it is not a primary component<br>of the Off-Site Alternative. DOE recently<br>entered into a contract with WCS.<br>The RIFS addresses only the waste materials<br>that are LLW or LLW/mixed and the WGF<br>basis assumes all non-rad materials have been<br>segregated and property dispositioned<br>elsewhere. There is no basis for estimating the<br>volume of additional materials for segregation<br>or recycle. Anticipated contract rates for ES<br>disposal are given in the detailed discussion of<br>the Off-Site alternative in Section 6.           | Since DOE has a contract with WCS, it should be<br>considered a primary component of the Off-Site<br>Alternative.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | -<br>-                                             | Subsequent pages through about 2-9, including<br>figure 2-2 should include diversion of more debris<br>into non- rad disposal. Some demolition buildings<br>(Table A-2) will not produce all rad waste unless<br>they are mixed with radioactive wastes (dilution).<br>It was not our intent to allow clean waste to be<br>mixed with concentrated rad waste to get higher<br>volume lower activity rad waste (dilution).                                                                                                                                                                                                                                                       | Waste that is disposed in the EMDF will only<br>be that generated by CERCLA actions. Clean<br>soils and soil-like materials may be used as<br>void fill necessary to maintain structural<br>stability and prevent cap subsidence. This is<br>not dilution. It is worth noting, however that<br>addition of clean fill in and around<br>radioactive wastes acts as shielding and<br>therefore helps to reduce exposure and risk.                                                                                                                                                                                                                                                                             | Evaluation of the EMWMF WAC shows that<br>clean fill is being used to reduce the VWSF.<br>The mixing of clean material with rad waste is<br>defined as dilution. In addition, in the event of<br>containment failure any additional "clean" fill<br>material added to EMDF will effectively and<br>proportionally increase the amount of<br>contaminated material to be handled due to<br>cross contamination. In essence all clean<br>material added to EMDF becomes additional<br>waste to be dealt with if a containment failure<br>occurs. |
| 3) | Executive<br>Summary,<br>Page ES-4                 | "The estimated total project cost for implementing<br>the Off- site Disposal Alternative is \$1.992 billion<br>(B [2012 dollars]) or \$1.408B (present worth)."<br>Is the EMDF cost estimate a fixed price "turn-<br>key" bid where DOE closes the facility upon<br>depletion of the proposed funding cost?<br>The Off-site Disposal Alternative of \$1.992<br>billion should be based on hard bids from off-site<br>disposal facilities.                                                                                                                                                                                                                                       | The contracting approach (i.e., turn-key,<br>fixed price, design-build, incremental, etc.)<br>has not been decided and is not germane to<br>this document. It is assumed that DOE will<br>fund landfill construction, operation,<br>closure, and post-closure to the extent<br>required to achieve remedial goals and<br>ROD requirements.<br>The cost estimates presented in this RI/FS are<br>based on commonly available commercial<br>rate tables (e.g., R.S. Means), material quotes<br>(if available), available disposal rate tables,<br>experience, and labor rate tables for the ORR.<br>Hard bids are not appropriate at this stage<br>because the design is conceptual, not for<br>construction. | When onsite disposal costs are used and<br>thusly compared to alternatives to justify<br>onsite disposal, then all alternatives are<br>germane to this document. If it can be<br>assumed that DOE will fund all<br>construction, operation, and remediation;<br>then it needs to be clearly stated in the<br>document<br>Were volume negotiated price negotiations<br>used for off-site disposal and rail<br>transportation?                                                                                                                   |

| 4) | Page 5-2,<br>Table 5-1           | Table 5-1 does not evaluate waste classification.<br>Disposal of clean wastes into non-rad RCRA<br>permitted facilities is not mentioned. This infers<br>dilution will be practiced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 5-1 is intended to evaluate effectiveness,<br>implementability, and relative cost only; waste<br>characteristics and classification are discussed<br>in Section 2 of the RI/FS. Table 5-1 has been<br>extensively revised in response to EPA<br>General Comment 10 and TDEC Specific<br>Comment 5. Please also see response to the<br>second part of Specific Comment 2, above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clean material and dirty wastes should be kept<br>separate. Mixing separate clean material with<br>waste is avoidable and is called "dilution".<br>Mixing coincident wastes contaminated to<br>various degrees is unavoidable and is called<br>"blending". Dilution increases radioactive waste<br>volume and blending does not.<br>See 46FR51100 for original rational on this to<br>conserve disposal volume. See 76FR50500 for<br>updated considerations. |
|----|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5) | Page 5-3,<br>Table 5-1           | Waste Control Specialists (WCS) is a viable alternative that is not listed. Include WCS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WCS has been added to Table 5-1.<br>Additionally, note that WCS is addressed<br>in Section 6 as a process modification.<br>Please also see response to Specific<br>Comment 2, above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No further comment                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6) | Section<br>6.2.2.4,<br>Page 6-15 | "Disposal Facility"<br>"The geologic buffer could be comprised of<br>compacted native soil or in-situ fine-grained<br>native soil, saprolite, bedrock, or combinations of<br>these geologic materials, depending on measured<br>in situ hydraulic conductivity and layer<br>thickness."<br>There is some concern with the geologic material<br>used in the buffer. The use of saprolite or bedrock<br>may not be accurately measured in determining<br>hydraulic conductivity. Saprolite and bedrock<br>contains rock pieces that make it difficult to<br>compact and meet the hydraulic conductivity<br>criteria uniformly. The native soils should be<br>sieved before use. | In-situ fine-grained native soil, saprolite, and<br>bedrock refers to these materials in their<br>natural undisturbed (i.e., unexcavated)<br>positions. The hydraulic conductivity of these<br>undisturbed materials would be measured using<br>standard field and/or laboratory testing<br>methods, as appropriate for these various<br>materials during the site investigation program.<br>Excavated bedrock and rocky saprolite<br>materials would not be used to construct the<br>geologic buffer layer. DOE concurs large<br>pieces of rock would not be allowed in<br>compacted soil used to construct the geologic<br>buffer layer.<br>The text in Section 6.2.2.4 was revised to<br>clarify native soil used to construct the geologic<br>buffer layer (i.e., compacted native soil) would<br>be sieved in the borrow area, as required, to<br>remove large pieces of rock that could make it<br>difficult to compact and meet hydraulic<br>conductivity criteria, prior to placement and<br>compaction beneath the landfill. | No further comment                                                                                                                                                                                                                                                                                                                                                                                                                                           |

-

-

•

|    |                                  | "A lesson learned from the EMWMF construction<br>is that a landfill can be successfully constructed<br>over a tributary in BCV. An underdrain is<br>necessary within the tributary channel to provide<br>a flow path for groundwater immediately below<br>the landfill and prevent upwelling, since<br>tributaries are natural discharge areas for<br>groundwater."<br>A concern using an underdrain is for physical and<br>chemical weathering of the No. 57 stone<br>(limestone). Eventually the underdrain will fail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | As shown on Figure 6-9, the underdrain<br>would be constructed of siliceous rock and<br>not limestone to avoid weathering issues.<br>Wording was added to the text in section<br>6.2.2.4 stating the underdrain will be<br>constructed of siliceous rock to avoid<br>weathering issues.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | It is too early to declare victory on the EMWMF<br>underdrain. DOE must demonstrate the<br>underdrain will be effective for the duration of<br>the risk.                                                                                                                                                                                                             |
|----|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7) | Section<br>6.2.2.7,<br>Page 6-28 | "Leachate/Contact Water Treatment Facility"<br>"The portion of precipitation that falls within an<br>open, active cell potentially coming in contact with<br>the waste materials and collecting on the floor of the<br>cell (referred to as "contact water") would be<br>pumped out of the active cells and stored<br>temporarily in lined basins located near the landfill.<br>While in the basin, the contact water would be<br>sampled and tested to determine whether it is<br>contaminated. If the results of the analytical tests<br>indicate the contact water is free of contamination, it<br>would be released to the storm water detention<br>basin. If contaminated, the contact water could not<br>be released as storm water and would be transferred<br>to the treatment facility via a dedicated piping<br>system."<br>The term "Contact Water" as used here is a term<br>invented as a matter of convenience for the<br>EMWMF. It has no basis in TN Rules and<br>Regulations. The state's position is that the<br>protective soil layer should be engineered with<br>permeability such that water entering the active<br>cells will be collected as leachate as much as<br>possible. | The term "contact water" as used in this RI/FS<br>is the same term as used in EMWMF regulatory<br>documents. Based on EMWMF experience, the<br>volume of contact water generated in a given<br>year of landfill operation is approximately three<br>times the volume of leachate removed from the<br>leachate collection and removal system. Since<br>testing of the contact water at EMWMF has<br>demonstrated this fluid is typically not<br>contaminated above environmental release<br>criteria and typically can be released to surface<br>water without treatment, this RI/FS describes<br>managing this fluid separately from leachate to<br>reduce the volume of leachate potentially<br>requiring treatment and disposal. Section<br>6.2.2.9 of the RI/FS has been revised to include<br>the process option of making "windows" in the<br>protective soil layer and collecting contact<br>water as leachate. The pros and cons of<br>collecting contact water as leachate are<br>discussed in Section 6.2.2.9. | TDEC will require compliance with TN Rule<br>0400-02-1117, subparagraph (2)(f) to assure<br>the disposal site is designed to minimize to the<br>extent practicable the contact of water with<br>waste during storage, the contact of standing<br>water with waste during disposal and the<br>contact of percolating or standing water with<br>wastes after disposal. |
| 8) | Page 6-52                        | "Process Modifications"<br>Volume reduction prior to rail shipment should<br>be a given and not a Process Modification?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The value of VR for off-site shipments<br>depends on the quantities processed and the<br>manner in which VR is executed. As stated in<br>Appendix B, VR would be cost effective if<br>implemented programmatically and/or for<br>large volumes of material. If implemented at a<br>project level for small quantities, the cost<br>effectiveness is not clear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Consider to implement volume reduction programmatically.                                                                                                                                                                                                                                                                                                             |

| 9)  | Appendix C,<br>Page C-4,<br>First<br>Paragraph,<br>Lines 2-3 | From available maps it appears that the<br>proposed EMDF lies in the Anderson County<br>and not the Roane County Census Tract 9801.<br>Please explain this discrepancy.                                                                                                                                                                                                                                         | The text erroneously identified the county as<br>Roane; the error has been corrected to show<br>that EMDF site is in Anderson County.                                                                                                                                                                            | No further comment |
|-----|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 10) | Appendix C,<br>Page C-20,<br>Figure<br>C-10                  | Faults that are referred to in the text in section 3.2.3 should be labeled in Figure C-10.                                                                                                                                                                                                                                                                                                                      | According to Lemiszki (2000, Geologic Map<br>of the Bethel Valley Quadrangle. USGS Draft<br>Open-File Map GM 130-NE.) the White Oak<br>Mountain Thrust fault is more than 2,000 ft<br>below land surface at Bear Creek Valley,<br>more than 1,000 ft below the base of the<br>cross-section. No change was made. | No further comment |
| 11) | Appendix C,<br>Section<br>3.2.2.2.2<br>Page C-21             | "Rutledge Limestone"<br>This formation appears to be labeled "Friendship<br>Formation" in Figures C-9 and C-10 (maps) on<br>pages C-19 and C-20, respectively. As the<br>nomenclature "Friendship Formation" seems<br>limited to only the Oak Ridge Reservation it is<br>suggested that the designations on the two maps be<br>changed to reflect the commonly accepted<br>formation name Rutledge Limestone.   | Figures C-9 and C-10 have been revised.                                                                                                                                                                                                                                                                          | No further comment |
| 12) | Appendix C,<br>Section<br>3.2.2.2.4,<br>Page C-21            | "Maryville Limestone"<br>This formation appears to be labeled "Dismal Gap<br>Formation" in Figures C-9 and C-10 (maps) on<br>pages C-19 and C-20, respectively. As the<br>nomenclature "Dismal Gap Formation" seems<br>limited to only the Oak Ridge Reservation it is<br>suggested that the designations on the two maps be<br>changed to reflect the commonly accepted<br>formation name Maryville Limestone. | Figures C-9 and C-10 have been revised.                                                                                                                                                                                                                                                                          | No further comment |
| 13) | Appendix C,<br>Page C-22                                     | "weathers to for a strongly weathered<br>saprolite"<br>What is a strongly weathered saprolite? Is it<br>not still a saprolite?                                                                                                                                                                                                                                                                                  | Sentence has been revised to omit the words<br>"strongly weathered".                                                                                                                                                                                                                                             | No further comment |

| 14) | Appendix C,<br>Page C-24                   | Section 3.2.3 1st sentence, reference to the<br>Whiteoak<br>Mountain thrust fault- the fault needs to be<br>labeled on the figure (C-10)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figure has been revised.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No further comment                                                                                                                                                                                                                             |
|-----|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15) | Appendix C,<br>Section 3.2.3,<br>Page C-25 | "Geologic Structure"<br>Moore (1988) noted the presence of a few high<br>angle faults near ORNL, but tentatively concluded<br>that "<br>.groundwater conduits can occur along and near<br>faults .<br>but that such features are uncommon and may be<br>rare."<br>So, what is being said is that faults as conduits<br>are uncommon or rare, unless drilling or other<br>data support that?                                                                                                                                                                                                     | That is correct. Coring is expected to be<br>included in the site characterization study<br>to help evaluate the presence of fractures<br>and evidence of faulting.                                                                                                                                                                                                                                                                                                                                                     | No further comment                                                                                                                                                                                                                             |
| 16) | Appendix C,<br>Page C-25                   | "There is no evidence of active, seismically<br>capable faults in the Valley and Ridge<br>physiographic province or within the rocks under<br>where the ORR is located."<br>The wording in this document should not be so<br>dismissive about possible seismic hazards nearer to<br>the facility. The USGS estimate that an earthquake<br>as large as magnitude 7.5 (Richter) are possible in<br>the ETSZ (East Tennessee Seismic Zone) and<br>events of magnitude $5 - 6$ are possible every 200-<br>300 years. The largest event measured (magnitude<br>4.6) occurred near Knoxville in 1973. | Agreed. This paragraph has been moved to a<br>new subsection 3.2.4 entitled Seismicity,<br>which discusses earthquake history and<br>probability of future earthquakes in more<br>detail.                                                                                                                                                                                                                                                                                                                               | The state does not agree with the implicit<br>assumptions of the seismic activity in the Oak<br>Ridge area.                                                                                                                                    |
| 17) | Appendix C,<br>Page C-25 &<br>C-26         | The extensive discussion about fractures in this<br>section, although useful and fascinating, should be<br>taken within the context that it is dissolution along<br>bedding planes that is more important. Although<br>tributary flow must occur along fractures,<br>convergent regional flow occurs along conduits or<br>macrofissures to discharge locations that maybe<br>springs far downgradient or conduits inadvertently<br>intercepted by wells (probably domestic or<br>industrial) at depth.                                                                                          | This is the premise of the site conceptual flow<br>model. Please also note that bedding planes are<br>considered to be a type of fracture. The<br>sentence "It is possible that flow converges in<br>one or more master fractures, including<br>bedding planes, which discharge to springs<br>outside the EMDF area." has been added to the<br>discussion of flow presented in subsection<br>3.3.3.2.1, 3 <sup>rd</sup> paragraph. Additional supporting<br>text has been added to Sections 3.2.3, 3.3.1.2,<br>and 3.5. | The explanations given in 3.3.1.3 appear to<br>contradict themselves as far as cavity<br>occurrence in the shaly limestones of EBCV.<br>This demonstrates the point that modeling of<br>ground water in this area is extremely<br>challenging. |

•

.

| 18) | Page C-20,<br>Third<br>Paragraph, Last<br>Sentence | "Further, they corroborate the notion that<br>the most conductive zone is near the water<br>table."<br>The nature of flow in carbonates and probably in<br>fractured rocks like shales associated with<br>carbonates is one of vertical tiers of conduits that<br>initially form deep below the water table. Tiers are<br>formed during initial development of a<br>setting/aquifer (Worthington, 1991). There is<br>evidence that there is continuous discharge via<br>conduits from settings/aquifers through many<br>millions of years (Worthington, 2004) despite base<br>level lowering. Lower tiers discharge base flow<br>where higher tiers discharge near the water table.<br>Geologically recent changes to the landscape would<br>not affect flow in deeper tiers, when sea level was<br>130 m lower than at present during the last glacial<br>maximum this further deepened flow systems. | It is a misconception to view the ground water<br>flow system on the flank of Pine Ridge in terms<br>of a classical karst. A review of available<br>borehole data suggests that few if any conduits<br>are to be found in Conasauga Group units,<br>except for the Maynardville Limestone, where<br>they are relatively abundant. Tiers, in the<br>classical karst sense, are unlikely to form in the<br>shaley rocks under the EMDF site, although<br>there is evidence that there may be a deeper tier<br>in the Maynardville Limestone. Worthington<br>(1991) notes that even in classical karst terrains,<br>many cave/conduit systems do not have tiers.<br>Where tiers exist, they develop in response to<br>decreases in water table elevation as a result of<br>lowered base level or uplift. It is unlikely that<br>Pleistocene glacial sea level change greatly<br>affected areas as far inland as eastern Tennessce.<br>See added text in Sections 3.3.1.3, 3.3.3, and<br>3.3.3.2.1. | The comment does not refer to "karst". The lack<br>of deep monitoring does not allow for the<br>conclusion that ground water flow in this area is<br>shallow and discharges to surface water. In<br>contrast, there are numerous wells in the region<br>that produce high flows at depth. |
|-----|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

•

| 19) | Appendix C,<br>Section 3.3,<br>Page C-27,<br>Second<br>Paragraph | "Groundwater"<br>The quote and reference that follows summarizes<br>the use of the term aquitard in Oak Ridge.<br>"Contaminant migration through aquitards is often<br>erroneously believed to depend only on bulk<br>hydraulic properties of aquitards, without regard<br>to preferential flowpaths in the aquitard or<br>different contaminant types. Actual rates of<br>contaminant transport through aquitards can be<br>very different from those based on estimates of<br>bulk flow rates. Using a two-dimensional,<br>discrete-fracture model, Harrison, Sudicky, and<br>Cherry (1992) showed even though the volumetric<br>flow rates (i.e., Darcy flux) from an aquitard to an<br>aquifer can be very low, contaminant transport<br>through aquitards may be relatively rapid because<br>of fractures, even very small fractures, if they<br>fully penetrate the aquitard. Basic hydrogeologic<br>techniques designed for aquifers, such as pumping<br>and slug tests, commonly need modification to be<br>appropriate for assessment of low permeability<br>geologic media (Novakowski and Bickerton 1997,<br>Shapiro and Greene<br>1995, van der Kamp 2001)." | No change has been made to the text of Section<br>3.3. Aquitard is a comparative term used<br>primarily to convey a difference in relative<br>permeability, and by extension, transmissivity<br>and yield, between two or more hydrologic<br>units. It does not, and is not intended to,<br>indicate that groundwater does not occur in<br>rock units identified as aquitards, nor does it<br>indicate that these units will not also transmit<br>contaminants. In the Oak Ridge Reservation,<br>aquifers are those high-flow units, such as the<br>Maynardville Limestone and Copper Ridge<br>Dolomite, and aquitard refers to those units that<br>are less productive, like the Nolichucky Shale.<br>The USGS defines an aquitard as "A<br>saturated, but poorly permeable, geologic unit<br>that impedes ground-water movement and<br>does not yield water freely to wells, but which<br>may transmit appreciable water to and from<br>adjacent aquifers and, where sufficiently<br>thick, may constitute an important<br>groundwater storage unit. Aquitards are<br>characterized by values of leakage that may<br>range from relatively low to relatively high.<br>Areally extensive aquitards of relatively low<br>leakage may function regionally as confining<br>units within aquifer systems." (USGS Water<br>Supply Paper 2025). | Recent papers on units referred to as aquitards<br>show them not to be related to lithology but<br>rather to changes in vertical hydraulic<br>conductivity. Harrison, Sudicky, and Cherry<br>(1992)<br>The response to comments further demonstrates<br>that the term aquitard has numerous<br>interpretations that can lead to confusion<br>therefore, use of this term is very misleading and<br>should be discontinued. |
|-----|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|     |                                            | There are also other recent references that show it<br>is not appropriate to describe settings as aquitards<br>simply based upon lithology, where rather than<br>lithological changes, what is observed are sharp<br>changes in hydraulic head profiles in boreholes, not<br>related to lithological changes in stratigraphy<br>(Meyer at al, 2010, 2012).<br>The use of the term aquitard for lithologies in Oak<br>Ridge should be abandoned, they are shelf<br>sequences and in variably contain both shale and<br>carbonate, by their nature, shales in such sequences<br>are also most commonly discontinuous laterally. In<br>one case an Oak Ridge aquitard has a significant<br>spring that discharges from it, in another an Oak<br>Ridge aquitard is, in an adjacent state a karst<br>preserve, and overall, many domestic wells produce<br>from what are allegedly the aquitards. Use of this<br>term is very misleading and should be discontinued. | The term aquitard does not refer to lithology,<br>but to aquifer properties, particularly the<br>inability to transmit water at high rates. In<br>East TN, poorly transmissive water bearing<br>units are typically shales, clayey limestones,<br>silts, and tightly cemented sandstones and are<br>therefore correlated to lithology.<br>The reviewer is correct that the rock units under<br>Bear Creek Valley were deposited on continental<br>shelf environments and that individual layers can<br>be discontinuous or exhibit lithologic and facies<br>changes across an area. However, such<br>discontinuities are not significant at the at the<br>scale of the EBCV. The Warsaw and Ft. Payne<br>Limestones of south-central Kentucky<br>(Mammoth Cave area) provide an example of a<br>similar lithologic assemblage that produces<br>water at low volumes and does not contain<br>highly evolved conduit systems (Brown, 1966).<br>No revision has been made. | Recent papers on units referred to as aquitards<br>show them not to be related to lithology but<br>rather to changes in vertical hydraulic<br>conductivity. Harrison, Sudicky, and Cherry<br>(1992)<br>It is obvious that the term aquitard is being<br>used to describe less pure carbonates or shaly<br>limestones on the ORR.<br>The response to comments further<br>demonstrates that the term aquitard has<br>numerous interpretations that can lead to<br>confusion therefore, use of this term is very<br>misleading and should be discontinued. |
|-----|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20) | Appendix C,<br>Section 3.3.1,<br>Page C-27 | "Aquifer Characteristics"<br>The use of the term cavities implies that these<br>features are closed. This is theoretically almost<br>impossible to conceive of unless within the<br>framework of the initial deposition of the<br>sediments. Cavities as they are often referred to<br>are simply fragments of sinuous conduits that are<br>intersected by borings.<br>It is known in carbonates in many locations that<br>most of the flux (> 99%, for Oak Ridge; Davies,<br>2008,) is in conduits with most of the storage in<br>the rock matrix. 94% flux is in conduits regardless<br>of the age of the carbonate rock or the location.                                                                                                                                                                                                                                                                                                                     | A cavity is a void in the rock, and there is no<br>genetic implication as to its size, shape, or<br>connectivity with other openings. The word<br>cavity is a good general term for use on<br>borehole logs because of the very small area<br>accessed by the boring.<br>It must be recognized that, while the Maryville<br>and Rutledge formations are nominally<br>limestones, in the vicinity of the proposed<br>EMDF these units are dominated by shales and<br>siltstones that are far less susceptible to<br>dissolution than are more purely calcium<br>carbonate limestones. As a result, conduits are<br>unlikely to carry as great a proportion of the<br>ground water flux as purer limestones.<br>Evidence for the lack of strongly developed<br>conduit flow is found in the lack of karst<br>landforms.<br>Revisions have been made to first and second<br>paragraphs of Section<br>3.3.1.3.                                                              | This response underestimates the significance of ground water flux in anything other than pure limestone.                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 21) | Appendix C,<br>Section<br>3.3.1.2,<br>Page C-29 | "Fractures"<br>"Further, they found that fracture aperture is more<br>important than fracture spacing, and that fractures<br>will dominate flow if apertures approach 1 cm or<br>if gradient is very low so that no preferred<br>pathway develops."<br>It should be noted that low gradients also can<br>indicate that a preferred pathway has developed.                                                                                                                                                                                                                                                                                                                                                                                                                             | Comment accepted and text in Section 3.3.1.2 has been revised.                                                                                                         | No further comment                                                                                                                                                                                                                                                                  |
|-----|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22) | Appendix C,<br>Section 3.3.2,<br>Page C-30      | "Hydraulic Conductivity and Results of Tracer<br>Tests"<br>"Tracer tests offer one means of direct<br>groundwater flow rate measurement, although<br>they require either a large number of sampling<br>points, or knowledge of or good predictions of<br>flow patterns."<br>Actually the way tracing is done using injected<br>tracers, is that a hydrogeological conceptual<br>model of flow is made and then tested by using<br>injected tracers.                                                                                                                                                                                                                                                                                                                                   | Agreed. It is anticipated that tracer tests will<br>be conducted as part of the site<br>characterization effort to test the conceptual<br>model. No revision required. | Agree, if actual tracer tests are conducted.                                                                                                                                                                                                                                        |
| 23) | Appendix C,<br>Page C-32, Last<br>Paragraph     | It has been established that in all measured<br>carbonate aquifers in geological old or relatively<br>young rocks, > 94% of the discharge is in conduits,<br>with only a small fraction in the fractures and an<br>insignificant amount in the rock matrix (Davies,<br>2008; Worthington et al, 2000a, 2000b). This<br>paragraph sets the case for an equivalent porous<br>medium or a continuum approach. However, in the<br>second to last sentence, beginning "Worthington,<br>(2003, p. 30)" reference is made to using<br>MODFLOW to simulate flow in carbonates. This is<br>not the complete discussion from the reference, and<br>is misleading. The complete discussion in<br>(Worthington, 1999, incorrectly cited as 2003) does<br>not endorse using MODFLOW as is implied. | suggests that conduits are rare or non-existent in the stratigraphic units underlying the                                                                              | The original reference is Worthington 1999<br>page 30.<br>If insufficient data is available to employ the<br>method established by Worthington (1999),<br>then proper data needs to be collected, or an<br>alternative model needs to be utilized to<br>simulate ground water flow. |

| 24) | Appendix C,<br>Page C-34,<br>Table C-9          | Evans, et al. 1996 applied a particle tracking model<br>and inverse modeling to get an anisotropic ratio of<br>10:1 for BCV.                                                                                                                                                                                                                                                                                                                                                  | The 10:1 ratio was in fact used in the model<br>presented in Appendix F. This reference has<br>been added to Table C-9. Note that one of the<br>authors of this article actually performed the<br>modeling discussed in Appendix F. Text was<br>also added to Section 3.3.2.1, paragraph 5 to<br>further discuss anisotropy. | No further comment                                                                                                                                                                           |
|-----|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25) | Appendix C,<br>Section<br>3.3.2.2,<br>Page C-35 | "Results of Tracer Tests"<br>"Tracer tests are commonly used in fractured and<br>karstic aquifers because they are strongly<br>anisotropic and flow paths are difficult to<br>determine."<br>Since > 94% of the discharge/flow is in conduits<br>and conduits are known to connect sinking streams<br>and springs, with lengths sometimes of several<br>tens of kilometers, one would know the possible<br>extent of the flow path if the spring was the base<br>flow spring. | No revision is required. Please see answer to<br>Specific Comment 24 above. The aquifer at<br>the proposed EMDF site is primarily<br>fractured, not karstic, and conduits are<br>unlikely to be present under the site.                                                                                                      | Conduits could be upwards of a few<br>millimeters in hydraulic radius, these cannot<br>be eliminated as pathways. There are springs<br>at these locations that are being fed by<br>conduits. |
| 26) | Appendix C,<br>Page C-36                        | "Both of these types of behavior indicate a high<br>degree of longitudinal dispersion, which is typical<br>of systems in which matrix diffusion is dominant."<br>The reasons for a high value for longitudinal<br>dispersivity in contaminant or tracer transport is<br>also hydraulic complexity and the nature of the<br>release of the substance.                                                                                                                          | Agreed. One purpose of the test was to<br>determine if gas tracers would be effective in<br>hydraulically complex fractured rock, i.e., the<br>matrix. Text in paragraph 6 of Appendix C<br>Section 3.3.2.2 has been slightly revised.                                                                                       | Investigations in other settings suggest a<br>minimal role for the matrix with regards to<br>ground water velocities in conduits are with<br>hydraulic radii upwards of a few millimeters.   |

<sup>1</sup> White, W.B. and White, E.L., 2001. "Conduit fragmentation, cave patterns, and the localization of karst ground water basin: the Appalachians as a test case", <u>Theoretical and Applied Karstology</u>, vol. 13-14, pp. 9-24. <sup>2</sup> Worthington, S.R.H., 2003<sup>2</sup>. "A comprehensive strategy for understanding flow in carbonate aquifers", in Palmer, A.N., Palmer, M.V., and Sasowsky, I.D. (eds.), Karst Modeling: Special Publication 5. Charles Town, WV: The Karst Waters Institute, pp. 30-37

| No. | Reference                | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Response Approach/Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Approye/Rebuttal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                          | "Matrix diffusion retarded tracer movement by<br>uptake in<br>small blind fractures and pores, and maintained<br>high tracer concentrations by diffusing back into<br>the flowing groundwater in fractures over time."<br>Velocities in conduits are known to be rapid<br>(geometric mean = $0.022 \text{ m/s}$ , n = $3,077$ ) and<br>therefore mostly turbulent (Worthington et al,<br>2000a, 2000b). How would matrix diffusion<br>work if flow is turbulent?                                                                                               | This questions presupposes the existence of<br>highly evolved and integrated conduit systems<br>under the proposed EMDF footprint; there is<br>little evidence of such conduit systems in<br>Conasauga units outside of the Maynardville<br>Limestone. The conceptual model for the rock<br>units underlying the EMDF area is that<br>groundwater flows in highly and complexly<br>fractured rock, not conduits, and hence, matrix<br>diffusion is not only possible, but likely. | The anisotropy value determined in the Bear<br>Creek Valley system's tracer tests assumes that<br>there is more flow along strike (see comment<br>#24) which assumes no integrated conduit<br>system. Complex hydraulic interaction in fissures<br>can cause high longitudinal dispersion values and<br>is more likely than matrix diffusion. With<br>velocities higher than 0.001 m/s in fissures with<br>hydraulic radii greater than a few mm (Quinlan et<br>al, 1997), turbulent flow is likely and matrix<br>diffusion less likely.                                                                     |
|     |                          | "It is not the arrival time, but the peak<br>concentration, that is of interest, since this<br>represents the greatest risk."<br>The determination of an accurate peak<br>concentration is dependent upon sampling<br>frequency to avoid aliasing. Most current<br>sampling done under State, Federal, or any<br>other protocols do not sample often enough, so<br>the values obtained are the minimum that<br>could be passing a monitoring point. If the<br>monitoring location is a well there could be<br>other complications to interpreting the results. | The quoted statement refers to modeling results,<br>not actual sampling. However, the point is<br>taken, and will be considered in designing the<br>site characterization study.                                                                                                                                                                                                                                                                                                  | The peak concentration can only be modeled or sampled at the Nyquist rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 27) | Appendix C,<br>Page C-37 | The discussion of the storm-flow zone in the<br>second paragraph implies that this is how<br>recharge works in karst terrane in any climate or<br>landscape. The reference used is for "semi-arid<br>karst shrublands" which would not be<br>automatically appropriate for a temperate region<br>like Oak Ridge. There are data from the ORR<br>that refute the general thesis of the storm flow<br>zone that must be cited.                                                                                                                                   | That is not the intended implication; it is rather<br>that storm flow occurs in many environments.<br>Storm-flow is well documented for steep<br>forested slopes in humid climates, and has been<br>documented in many other areas as well. The<br>author of Appendix C is not aware of data that<br>refute the storm-flow thesis for the Oak Ridge<br>Reservation. The text of the 2 <sup>nd</sup> paragraph of<br>Appendix C Section 3.3.3.1.1 has been slightly<br>revised.    | <ul> <li>See following references:</li> <li>Luxmoore, R.J., and Huff, D.D., 1989 Chapter</li> <li>S: Water (in) Johnson, D.W., Van Hook, R.I.,<br/>and Ragan, A.L., (eds) Analysis of</li> <li>Biogeochemical Cycling Processess in Walker</li> <li>Branch Watershed, Springer-Verlag New York,<br/>p 164 – 195.</li> <li>Clapp, R.B., 1988 Water Balance Modeling (in)</li> <li>Huff, D., Environmental Sciences Division</li> <li>Groundwater Program Office Report of Fiscal</li> <li>Years 1995-1997, Environmental Sciences</li> <li>Division Publication No. 4751, ORNL/GWPO,<br/>p. 13-14.</li> </ul> |

| 28) | Appendix C,<br>Page C-38,<br>Figure<br>C-13                 | "Conceptual Model of Groundwater Zones in<br>BCV"<br>This figure lists water flux in the storm flow and<br>vadose zone as 90%, estimates of storm flow<br>were obtained from very steeply sloping sites. It<br>is extremely unlikely that 90% of water flux is<br>retained in storm flow or vadose on the<br>moderately sloping portions of the ORR.                                                                                                                                                                                                                      | Much of the site is steep, and the moderately<br>sloped areas also appear to be unaffected by<br>overland flow. Surface flow occurs rapidly in<br>response to heavy or prolonged precipitation in<br>zero and first order basins. The clayey soils<br>beneath the root zone are of too low<br>permeability to absorb more than a small<br>fraction of storm precipitation. Water balance<br>calculations indicate that most precipitation is<br>lost to stream flow and evapotranspiration. The<br>portion that rapidly enters streams must be due<br>to shallow transport. No revisions have been<br>made. | Soil, root zones, residuum or saprolite contain<br>macropores which can transmit recharge rapidly<br>downwards but are of limited volumetric<br>capacity which when exceeded results in surface<br>flow.                                |
|-----|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                             | Further this figure shows what is referred to as<br>an aquiclude at >500 ft. BGS. Based on the<br>definition of the aquiclude on page C-43.<br>Contaminants are reported from these depths on<br>the ORR (OREIS). Domestic wells emplaced<br>within the Conasauga Group Formations offsite<br>in the area offsite of Melton Valley were<br>reported to be completed at depths that would be<br>within the "aquiclude". The presence of<br>contaminants and the use of this interval for<br>domestic water production suggest that the term<br>aquiclude is inappropriate. | Solomon, et al. (1992) note that the saline<br>aquiclude in Melton Valley began with brackish<br>water at about 120 m (~395 ft) and became<br>saline below 180 m (~590 ft). In Bear Creek<br>Valley, brackish water is encountered at about<br>150 m to 300 m (492 ft – 985 ft) range, but<br>saline water was not encountered. This indicates<br>that the aquiclude is deeper in Bear Creek<br>Valley than in Melton Valley. Note that brackish<br>and saline water is not potable.                                                                                                                        | It is problematic to assume saline waters are<br>immobile, migration of brines formed the deep<br>flow system deep in the Knox aquifer. Drilling in<br>the valley and ridge encounters both saline and<br>fresh waters at great depths. |
| 29) | Appendix C,<br>Section<br>3.3.3.2.2<br>Pages C-42 &<br>C-43 | "Intermediate and Deep Aquifer Zones"<br>This discussion and table C-10 suggests that<br>elevated pH in the deeper briny groundwaters of<br>Oak Ridge are normal. Most deep wells (not<br>affected by contamination) encountering brines<br>in the Valley and Ridge are somewhat acidic not<br>caustic as presented in ESD publication 2863.<br>Elevated pH is unlikely to be a normal condition<br>of groundwater beneath the ORR.                                                                                                                                       | Schreiber $(1995)^3$ reported that only two of 55<br>samples of formation waters from 3 shallow<br>wells in the Nolichucky Shale of East Bear<br>Creek Valley exhibited a pH of < 6.0 S.U.; the<br>remaining 53 ranged from a low of 7.8 S.U. to<br>8.3 S.U. Similarly, Drier, et al. reported a pH<br>range of 7.0 to 9.6 for samples from multiple<br>depths in 3 deep wells in the Conasauga Group<br>near the S-3 Ponds.                                                                                                                                                                                | Information in this response is from the ORR. It<br>can be assumed that these waters are<br>contaminated and would therefore have a higher<br>pH. This does not address the original comment.                                           |

| 30) | Appendix C,<br>Section 3.3.4,<br>Page C-44      | "Groundwater Contaminants"<br>According to the Final Report End Use Working<br>Group<br>1998, chemicals of concern at the integrator<br>plane are uranium, nitrate, boron and fluoride.<br>Nitrate and gross alpha in groundwater exceed<br>legal requirements. Boron and fluoride are not<br>included.                                        | Site Specific Advisory Board<br>Recommendations are advisory, not<br>requirements. Boron and fluoride limits are<br>not remedial action objectives or primary<br>contaminants as identified in the ROD, and<br>are therefore not monitored at the Integration<br>Point (Bear Creek kilometer 9.2). For<br>comparison only, the Safe Drinking Water Act<br>maximum contaminant limit (MCL) for<br>fluoride in drinking water is 4.0 mg/L; the<br>Bear Creek Valley Remedial Investigation<br>reported that fluoride did not exceed 2.0 mg/L<br>in either NT-1 or at the BCK 12.71 sampling<br>point. There is no MCL for boron. | No further comment |
|-----|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 31) | Appendix C,<br>Section<br>3.4.2.4,<br>Page C-S0 | "Tributary Contaminants"<br>"Water in NT-3 currently meets ambient<br>water quality criteria (AWQC)."<br>Is the referred AWQC, ambient water quality<br>criteria, the State of Tennessee General Water<br>Quality Criteria, listed within the TDEC<br>Water Pollution Control document, General<br>Water Quality Criteria, chapter 1200-04-03? | This does refer to the TDEC ambient water<br>quality criteria. However, the statement was<br>in error. The NT-3 monitoring station had one<br>exceedance for a PCB in 2011. Annualized<br>uranium flux continues to exceed the NT-3<br>goal of 4.3 kg/yr. The second paragraph of<br>Section 3.4.2.4 has been revised accordingly.                                                                                                                                                                                                                                                                                             | No further comment |
| 32) | Appendix C,<br>Section 3.6.2,<br>page C-56      | "Aquatic Resources"<br>There is considerably more information relating<br>to species in Bear Creek than is presented for<br>NT-2 and NT-3. The ORNL Biological<br>Monitoring and Abatement Program collect<br>annual samples of macroinvertebrates in NT-3;<br>why is this information not presented?                                          | Text in Appendix C, Section 3.6.2, Aquatic<br>Resources has been substantially revised to<br>include biologic monitoring data and<br>interpretations from recent DOE and TDEC<br>reports. A new Section 3.6.3 has been added to<br>discuss recent conditions on NT-3. Additionally,<br>minor updates were made in Sections 3.3.4<br>Groundwater Contaminants, 3.4.2.4, Tributary<br>Contaminants, and 3.4.3.4, Bear Creek<br>Contaminants to reflect the 2012 Remediation<br>Effectiveness Report that available after the D1<br>RI/FS was issued.                                                                             | No further comment |

<sup>3</sup> Schreiber, M. E., 1995. Spatial Variation in Groundwater Chemistry in Fractured Rock: Nolichucky Shale, Oak Ridge, TN. Master's Thesis: University. of Wisconsin-Madison.

.

.

•

| No. Reference | Comment                                                                             | Response Approach/Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approve/Rebuttal                                                                                    |
|---------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|               | The modeling assumptions are not explicitly spelled out, explain what they are.     | The model suites used in pWAC<br>development are discussed in Section 3 of<br>Appendix F and a visualization of their<br>interrelationship is presented in Figure F-4.<br>As discussed in the appendix, the HELP<br>model provides water mass input into the<br>waste and out of the cell liner. No revisions<br>have been made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Disagree. All assumptions and limitations for the referenced models should be listed and discussed. |
|               | What assumptions from the various model<br>types overlap and have compound effects? | MODFLOW/MODPATH models predict the<br>groundwater flow field, direction, and<br>velocity. The MT3D model, even though it<br>is a complete fate-transport model, is only<br>used to derive the dilution factor between the<br>well water and leachate into the water table<br>directly beneath the cell caused by advection<br>process (water mixing only in the flow field<br>and applied to all contaminants). All of the<br>other fate-transport processes, such as<br>contaminant specific dispersion, retardation<br>due to absorption, and degradation<br>(radioactive decay), are considered during<br>PATHRAE model application. Therefore,<br>there are no overlap or compound effects<br>from any of the fate-transport processes. As<br>discussed in EMWMF WAC development<br>(Page E-52 of DOE, 1998) and confirmed by<br>this analysis, majority of the water travel<br>time occurs in the vadose zone, and the<br>travel time to surface water through bedrock<br>pathways is very fast. Thus the disposal<br>design cell design is the primary element in<br>attaining long-term environmental isolation<br>of the waste. The natural geochemical<br>properties of the site aquifer play a relatively<br>minor role in reducing potential impacts<br>from contaminant release. No revisions<br>have been made. | Disagree. All assumptions and limitations for the referenced models should be listed and discussed. |

| What are the assumptions about the waste cell<br>with regards to rapid groundwater flow and<br>transport that should be expected for the terrane<br>beneath the site? | All the fate-transport processes downgradient<br>from the cells in the groundwater zone, such<br>as advection, contaminant specific dispersion,<br>retardation due to absorption, and degradation<br>(radioactive decay), are considered either in<br>the MT3D model or PATHRAE model. As<br>stated in the appendix, different parameters<br>are used as these of vadose zone that leachate<br>properties are used. No revisions have been<br>made.                                                                                                                                                                                                                                                      | Disagree. All assumptions and limitations for the referenced models should be listed and discussed.                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| What is the assumption for leachate far down<br>gradient of the cell?                                                                                                 | A steady state flow condition in a constant<br>physiochemical system is assumed for the<br>duration of the modeling period.<br>Geochemical reaction and transport<br>parameters remain constant. This is a<br>generally accepted approach because of the<br>many uncertainties associated with these<br>processes. In this particular application for<br>the EMDF, the impact will be likely minimal<br>as the WAC was developed using the<br>assumption that the worst case leaching<br>scenario started as soon as disposal cell<br>closed. In reality, it will take up to thousands<br>of years before the worst case developed<br>after the cell closure with system function of<br>the cell design. | Disagree. Worst case scenario would occur while<br>the cell is still active and receiving inputs from the<br>environment. |

| 34) | Appendix F,<br>Section 2.1,<br>Page F-3, Fourth<br>Paragraph | "Small-scale geologic features, such as<br>fractures and solution features are a major<br>factor in groundwater movement through the<br>formations underlying the BCV."<br>These features rarely have a major role in<br>groundwater movement because they will only<br>be tributary pathways to major large-scale<br>features. Unfortunately these maybe be missed<br>by drilling, even though the small-scale<br>features may be encountered by drilling. | Studies conducted on Oak Ridge Reservation<br>weathered bedrock zones suggest that small-<br>scale geologic features, such as fractures,<br>joints, bedding planes, and solution features,<br>are in the primary pathways for groundwater<br>movement through the in the weathered and<br>competent bedrock. These features are the<br>only void spaces available that are widely<br>distributed, sufficiently open, and<br>interconnected to accommodate ground water<br>flow. A sentence has been added to Section<br>2.1, paragraph 4, to make this distinction more<br>clearly.<br>We do agree that large scale features, such<br>as a major fracture, karst zone, or a fault<br>zone, will impact or control groundwater<br>flow if they are present in the area. Karst-<br>like conditions, while not present under the<br>proposed EMDF site, do exist in the<br>Maynardville Limestone on the floor of Bear<br>Creek Valley and together with Bear Creek,<br>provide the exit path for waters in the basin.<br>However fractures, bedding planes, and to a<br>lesser extent, conduits carry the majority of<br>ground water flow in and near the proposed<br>EMDF footprint. No revisions have been<br>made. | Disagree. Fissures with hydraulic radii of a few<br>mm can sustain turbulent flow and rapid velocities<br>(0.001 m/s) (Quinlan et al, 1997). This suggests<br>that small-scale features could be as influential as<br>large-scale features. |
|-----|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

\_

| 35) | Appendix F, | The majority of flow in only the upper 100 ft of bedrock is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Numerous studies conducted an the ORR have inducted that the majority of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The data on deep flow on the reservation is limited |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|     |             | supported by data. The problem is that if enough deeper wells were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | groundwater flow occurs in relatively challow actuated zone of bodrock. These                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and quantitative hydrogeology has not been done to  |
|     | Paragraph   | not drilled then it is flawed logic that leads to this conclusion,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | strafics have included went helence analysis, equific texts, conclude goophysical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an extent that supports this response.              |
|     |             | especially when conduits are difficult to intercept when drilling. For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | observations, com description of finences and poroity distribution with depth, ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
|     |             | example, there are many deep wells in every valley on the ORR that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | waar goodemiery, and elserved behavier of comminant piemes. Some of elsee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
|     |             | exhibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | conditions are reconstrated bulener.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
|     |             | meteoric water signatures and often contaminants. Would this not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | As Restores and Reading (1985, p. 2) tained and "The Kanna Group in the Vallay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|     |             | be evidence that probably a considerable amount of groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and Ridge of East Termenes is complexity folded and furthed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
|     |             | croulates much deeper than 100 ft below the land surface? The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cycoregenty assues was the same as as a second of the second of a regional<br>constant of the valley and Ridge thes timbs development of a regional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
|     |             | The nature of groundwater circulation at depth should be revisited,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | equific with regional flow. Regional flow that resulted in MVT-type on<br>Amounts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
|     |             | others. The notestical death of circulation in the conformates could                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
|     |             | well in excess of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence that the majority of ground water flow occars in the shellow 2000 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |
|     |             | 400m or even deeper (Brahana and Bradley, 1985). For a basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | discussed in Amondix C and summined below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
|     |             | length of 12 kilometers, (approximately from S3 ponds to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conference to the sector in the day the 16/05 study for the Pear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
|     |             | Clinch River) the calculated depth of circulation is 170 m below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Creek Velley (Robinson, J.A. and Jahman, G.C. 1995) and site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                   |
|     |             | the present water table, circulation along the whole length of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | specific statists (DOS, 1997; Shennell, 1994; Datat, G.M. 1995;<br>Colomon 1987: Monte and Trans 1987: Reling and Let 1991;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
|     |             | projected basin (~40 km). This is fur deeper then the river, which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | themes. 1991; Names, et al., 1987) due concluded that must of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
|     |             | has been claimed to be a barrier to groundwater flow. The 170 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | surface weins and grand when interactions constrainting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
|     |             | depth is not extreme, in fact, it was predicted in early and recent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | stadow microsis. Appendix C discrimina this in grants defini-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |
|     |             | models constructed in Bear Creek Valley and such a circulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Bear Crock is a chellow stream arbitring scasscally variable flow,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |
|     |             | depth has been openly discussed in other documents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | reasoning the management enswers manage ware and ground wave now.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
|     |             | The fact that deep circulation has been madicted and documented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | interaction between authon weter and shallow groundwater. Sheveell,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
|     |             | An the OPP (Marin et al. 1001) should mean that mution should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1994 showed that the Mayaushills Lineatone underlying Baze Cook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                   |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | separat aparty is presidence states. Las a more manage a<br>Averait C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
|     |             | Waste released. This would be of particular concern in Bear Creck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The majority of the controlinant phones in cast block Vality are<br>Listic actually define the set of feature to be and an and the red and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
|     |             | Valicy because it is known that there are sections of Bear Creek that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second in source ( 1990 a) marked as a second provided in the second second as a second as the second s                          |                                                     |
|     |             | sink into the ground downstream and down gradient of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | servers. SAIC (1997) identified aiparts contaminants from the S-3 Prends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |             | proposed new waste cell. As of yet there has not been a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | to depths of approximately 500 R below grade in ERCV. The S-3 phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
|     |             | quantitative assessment made of how much groundwater, tracers, or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | suctions to the lower emotion of NS-3 and Norr Chart, and and not<br>summer to should be bouch of Base Over Viet Willow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |
|     |             | contaminants flow in shallow, intermediate or deep groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
|     |             | zones (deeper than 120 m, 400 ft) as determined by Bailley and Lee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Bernard sources on the value sector and unit sector and with a source of a sector of a se</li></ul>                    |                                                     |
|     |             | (1991) from both potentiometric and geochernical data. It should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in bulk permethility and flow. (Solomon, et al., 1992). Moone and Young.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |             | noted that the hydrautic conductivity value used in the digital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1992). Nemerous applier tests demonstrate that hydraude communicatery as<br>Multiset in Surchaires was and Assesses with damin futures and Young                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
|     |             | model constructed by Bailey and Lee (1991) of 3E-10 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1992); an Appendix C. Any member of studies from many different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
|     |             | is extremely low when it is known that contamination and evidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | agaition and petrolenes repervoim lend angoest to those conclusions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
|     |             | of meteoric veter chrodietion is documented at erreter denths (Netiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>The shelfow news (&lt;100 ft, below the weter table) is characterized by</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
|     |             | f et al 1907) Ruidance of dean flow in the Cambrian and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co. Mg-HOOD grademingy, infinating strang metoothic infination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
|     |             | Orthonician carthonates that extend arrows the mid-continent and that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wate concerny can note an actual new proving a concerned of the second defined of large and been defined to be a poorly defined to be a second to be a second defined to be a second to                          |                                                     |
|     |             | underlie the ORR is well known and well documented (Graven et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | same of NaCl - Net/CO3 ground webr has been documented in RIBCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
|     |             | al. 1993: Brahana and Bradley, 1985: Brahana et al. 1986) In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Bulky and Los, 1991; Hann, 1991); this may be the stank of differing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
|     |             | several locations near the noncerd site them are loting reaches of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
| _   |             | Bear Creek. Most models constructed in the past for Bear Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11x mailer ground water new regime water to the test over the mailer is confined by the surrandom rights, and is not approxify part of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|     |             | Valley assumed that groundwater could circulate at various depths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | scenetion-wide regional flow system. A potential contentionet phone calibra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
|     |             | below the carent water table. These depths were assumed from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | us unter a na exponent to extent top<br>grest distance before it discharger into Maynaufville Linnettune conduits and Bear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
|     |             | certy investigations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Order. The constraints is supported by the groundrikes of contractment planets from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
|     |             | This is a reasonable assumption and follows the documented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SO Product and the HY/SM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
|     |             | nature of thow in carbonates workdwide (Worthington, 1991;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Further, the Bear Court parties through a water gap in Plac Widge, experience the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
|     |             | AUM-1. I the losting reaction of boar Creek rechange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lower basis from the upper tasis. The basis length in the upper Basr Creck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
|     |             | grounowater and mus recreater regional tiow paths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | catcheners in about \$1 km, and taxaed on Woodington (1991), the minimum lank<br>Andh woodin to administ at about 150 m. which is conservat with the durith of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|     |             | Device of all (2012) 2009 unit (Culture groundwich 1009 11<br>  the Valley and Didge movimes in minted to bring minerity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | contamination in the 5.3 aircain planes in the Maynerdvills (increase. However,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
|     |             | I use they are made protein is idente to drift interaction of the protein of the second terms of the second s | uting Worthington's (1991, bg. 7.4) apprend to currenting mens 1994 appres, J <sub>m</sub><br>0 ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |
|     |             | and 100 Ma. across the 1/S Midentificant according to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-0.061(l_x \sin \theta + 0.034l_x \sin \theta)$ , where $\theta = 45° (dip), \Phi = 60° (mgh of the second se$ |                                                     |
|     |             | conceived and measured by Graven et al. (1993) and Leech at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>1</sup> Corr vector parallel to NT-3 relative to statist, and i.z.=0.91 km (flow langth from<br>two of them 2 shows a configuration of NT-3 and Barr Corch1 the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
|     |             | al., (2001). The issue of regional migration of groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mean flow depth is about 43 m (-148 fb) firs the EMOP area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
|     |             | and contaminants from the ORR along regional pathways has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Regarding MVT over, plane ato the augoment to Connect 4.13, betweed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
|     |             | not been addressed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |

ł

Page 27 of 29

| 36) Appendix F,<br>Page F-48,<br>Table F-5 | The table contains values that require some discussion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | See responses below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | See below.                                                                                                                                                                                                                   |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | Groundwater zone: horizontal velocity, the value<br>of 14 ft/ y (0.012 m/y) is far too slow for the<br>terrane underlying the proposed facility. The<br>geometric mean groundwater velocity in conduits<br>in carbonates is 1,700 m/day (Worthington et al.,<br>2000a; 2000b). In general between wells, most of<br>which do not often intersect conduits traced<br>velocities are in the range of 100 - 500 m/day.<br>The reviewer understands the modeling<br>limitations with regards to MODFLOW not being<br>compatible with settings with high velocities and<br>aspects of turbulent flow that should be expected<br>even in small-sized openings. Knowledge of the<br>limits of such models should eliminate their<br>choice early on in the design process. | Reasoning from the general to the specific<br>does not provide accuracy; at the EMDF site,<br>the carbonates are shaley and do not contain<br>extensive conduit systems. The values<br>provided in the table are the average flow<br>velocity for an assumed aquifer system in<br>which all connected void spaces, including<br>matrix pores, fractures, and conduits,<br>contribute to steady-state flow. It does not<br>represent fracture flow only, where high<br>ground water velocities may exist during a<br>storm event but which contributes a relatively<br>small amount of contaminant mass movement<br>on an annual basis. High velocity flow during<br>storm event is generally short in duration and<br>extremely diluted in terms of contaminant<br>concentration.<br>To calculate a risk, all pathways and the<br>total available contaminant mass have to be<br>considered. The final footprint of a<br>contaminant plume is determined by<br>groundwater interacting with all aquifer<br>rocks and conditions that host ground water<br>storage and flow. Use of an average flow<br>velocity for the whole aquifer matrix in the<br>model actually provides the most<br>conservative risk estimation in term of peak<br>contaminant concentrations.<br>The travel time within the aquifer zone is<br>much shorter than the travel time in the<br>unsaturated zone from the bottom of the<br>waste to the water table. Also, since the risk<br>is based on peak concentrations, rather than<br>travel time within the ground water zone,<br>small changes in travel time will have<br>minimal impact on overall risk. | A more in-depth discussion for the assumptions<br>needs to be included in the text. Based on this<br>explanation, it appears that actual data would have<br>provided a more accurate estimate of average flow<br>velocities. |

٠

\*

|     |                                             | Migration of deep brines and groundwater<br>related to the formation of MVT (Mississippi<br>Valley Type) ore deposits in early Paleozoic<br>sediments (mostly carbonates) over great<br>distances across the mid continent is a concept<br>that has been discussed for decades and is well<br>accepted (Graven et al.,<br>1993). Modeling and dating show that the deep<br>flow system was in place before the extensive<br>folding and faulting in the Valley and Ridge<br>province. This would mean that any recharge<br>or water associated with the waste cell that was<br>lost to the ground could enter this regionally<br>large flow system. | MVT ore bodies that formed as the result of<br>large deep regional ground water flows that<br>occurred after the tectonic deformations that<br>formed the Appalachian Mountains.<br>According to Garven (1993), these flow<br>were driven by gravity from distant<br>highlands, such that velocities declined to<br>essentially zero as topographic relief in the<br>source areas was reduced. These flow<br>systems were hypothesized as occurring at<br>depths of several kilometers, well below the<br>aquifers of the ORR. Further, the structural<br>faulting and folding of the Valley and Ridge<br>Province interrupts possible regional flow<br>paths that might once have been present.<br>This migration route is not credible. Further,<br>it is doubtful that sufficient contaminant<br>mass could reach and be transported by any<br>very deep regional aquifer without dilution<br>to undetectable levels. No revisions have<br>been made. | Disagree. The "distant highlands" were among<br>others the Appalachians and folding and faulting,<br>according to Leach et al. (2001), occurred after<br>pathways were developed. Faulting of carbonates<br>against carbonates could cause cross-formational<br>flow. Response on dilution and dispersion is<br>appropriate. |
|-----|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37) | Appendix<br>G, Section<br>4.1, Page G-<br>8 | "On-Site Disposal Alternative Cost-Estimate<br>Assumptions"<br>"The long-term monitoring and maintenance for the<br>EMDF<br>would continue after closure of the facility. A<br>perpetual care fee of \$1M per year for each year of<br>operation of the EMDF would be paid into an<br>escrow account to be used for long-term<br>monitoring and maintenance."<br>The state has not agreed to the use of a perpetual<br>care fund for long term maintenance post closure<br>of the EMDF.                                                                                                                                                             | Consistent with the agreement reached with<br>the State of Tennessee regarding perpetual<br>care and surveillance and maintenance of the<br>EMWMF, DOE anticipates some residual<br>annual costs associated with long-term<br>monitoring and maintenance similar to those<br>agreed upon for EMWMF. A perpetual care<br>fee of \$1M per year of operation is accounted<br>for in the EMDF cost estimate to cover the<br>expected costs of long-term monitoring and<br>maintenance. However, no assumptions have<br>been made to address the performer of those<br>actions, since that is beyond the scope of this<br>document.                                                                                                                                                                                                                                                                                                                           | No further comment                                                                                                                                                                                                                                                                                                           |

4